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Metric spaces

Definition

A metric m on a set X is a function m : X × X → [0,∞)
satisfying the conditions:
(a) For all x , y ∈ X , m(x , y) = 0 if and only if x = y .
(b) m(x , y) = m(y , x) whenever x , y ∈ X .
(c) m(x , z) ≤ m(x , y) + m(y , z) whenever x , y , z ∈ X .
(Here [0,∞) denotes the set of the nonnegative reals.)
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Injective metric spaces

Definition

A map f : (X , d)→ (Y , e) between metric spaces (X , d) and
(Y , e) is called isometric provided that d(x , y) = e(f (x), f (y))
whenever x , y ∈ X .
A map f : (X , d)→ (Y , e) between metric spaces (X , d) and
(Y , e) is called nonexpansive provided that
e(f (x), f (y)) ≤ d(x , y) whenever x , y ∈ X .
A metric space (X ,m) is said to be injective if it has the following
extension property for nonexpansive maps: Whenever Y is a
subspace of a metric space Z and f : Y → X is a nonexpansive
map, then f has a nonexpansive extension f̃ : Z → X .
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Hyperconvexity

Definition

A metric space (X ,m) is called hyperconvex if for each A ⊆ X
and each family of positive real numbers (rx)x∈A the conditions
m(x , y) ≤ rx + ry whenever x , y ∈ A imply that
∅ 6=

⋂
x∈A Cm(x , rx).

Here Cm(x , rx) denotes the closed ball of radius rx at x ∈ A.

Proposition

(1956: N. Aronszajn and P. Panitchpakdi) A metric space is
hyperconvex if and only if it is injective.
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Convexity

Definition

Let (X ,m) be a metric space. Then X is metrically convex if for
any point x , y ∈ X and positive numbers r and s such that
m(x , z) ≤ r + s, there exists y ∈ X such that m(x , y) ≤ r and
m(y , z) ≤ s.

Example

`∞ is hyperconvex. This is the space whose elements consist of all
bounded sequences (xn)n∈N of real numbers, with distance
m∞((xn)n∈N, (yn)n∈N) = supn∈N |xn − yn|.
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Hyperconvex hull (1964: Isbell)

Remark

The metric hyperconvex hull MX of a metric space (X ,m)
consists of all the minimal ample functions f : X → [0,∞) where
we call f ample if m(x , y) ≤ f (x) + f (y) whenever x , y ∈ X and f
is called minimal among the ample functions on X if it is minimal
with respect to the pointwise order on these functions.
Then E(f , g) = supx∈X |f (x)− g(x)| whenever f , g ∈ MX defines
a metric on MX .
Furthermore given x ∈ X , h(x) = m(x , y) whenever y ∈ X defines
an isometric embedding of (X ,m) into (MX ,E ).
The closure of h(X ) in MX yields the completion of the metric
space (X ,m).
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f0(b)

f0(a)

f0(c)

a

f0

b

c=h(c)

Figure: Consider the metric space (X ,m) with 3 points a, b, c . The
injective hull of (X ,m) is determined by a function f0 defined as follows:
f0(a) = ab+ac−cb

2 , f0(b) = bc+ba−ca
2 and f0(c) = ca+cb−ab

2 .
Here for instance ab = m(a, b).
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Motivation

“Besides, one insists that the distance function be symmetric, that
is, d(x , y) = d(y , x). (This unpleasantly limits many applications:
the effort of climbing up to the top of a mountain in real life, as
well as in mathematics, is not at all the same as descending back
to the starting point).“

M. Gromov, Metric Structures for Riemannian and
Non-Riemannian Spaces, vol. 152 of Progress in Mathematics,
Birkhäuser.
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T0-quasi-metric spaces

Definition

Let X be a set and d : X × X → [0,∞) be a function. Then d is
called a quasi-pseudometric on X if
(a) d(x , x) = 0 whenever x ∈ X , and
(b) d(x , z) ≤ d(x , y) + d(y , z) whenever x , y , z ∈ X .
We shall say that (X , d) is a T0-quasi-metric space provided that
d also satisfies the following condition: For each x , y ∈ X ,
d(x , y) = 0 = d(y , x) implies that x = y .

Definition

Given a T0-quasi-metric space (X , d), the specialization (partial)
order ≤d of d is defined as follows: For each x , y ∈ X , set x ≤d y
if d(x , y) = 0.
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Examples of T0-quasi-metrics

Example

Let (X ,≤) be a partially ordered set. Then the function d on
X × X defined by d(x , y) = 0 if x ≤ y and d(x , y) = 1 otherwise,
is called the natural T0-quasi-metric of the partial order ≤ on X .

Example

Given two real numbers a and b we shall write a−̇b for
max{a− b, 0}.
Then u(x, y) = x−̇y with x , y ∈ R defines the standard
T0-quasi-metric on the set R of the reals.
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The dual and the supremum of a T0-quasi-metric

Let d be a quasi-pseudometric on a set X . Then
d−1 : X × X → [0,∞) defined by d−1(x , y) = d(y , x) whenever
x , y ∈ X is also a quasi-pseudometric, called the conjugate or
dual quasi-pseudometric of d .
If d is a T0-quasi-metric on X , then ds = max{d , d−1} = d ∨ d−1

is a metric on X .
Given x ∈ X and a nonnegative real number r we set
Cd(x, r) = {y ∈ X : d(x , y) ≤ r}.
This set is τ(d−1)-closed, where τ(d) is the topology having the
balls Bd(x, ε) = {y ∈ X : d(x , y) < ε} with x ∈ X and ε > 0 as
basic (open) sets.
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For (R, u), x ∈ R and ε > 0 we obtain

Bu(x , ε) = (x − ε,∞),

Cu(x , ε) = [x − ε,∞),

Bu−1(x , ε) = (−∞, x + ε),

Cu−1(x , ε) = (−∞, x + ε],

and
Bus (x , ε) = (x − ε, x + ε),

Cus (x , ε) = [x − ε, x + ε].
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Ample function pairs (Kemajou, Otafudu, etc.)

Let (X , d) be a T0-quasi-metric space. We shall say that a
function pair f = (f1, f2) on (X , d) where fi : X → [0,∞) (i = 1, 2)
is ample provided that d(x , y) ≤ f2(x) + f1(y) whenever x , y ∈ X .
Let PX denote the set of all ample function pairs on (X , d). (In
such situations we may also write P(X ,d) in cases where d is not
obvious.) For each f , g ∈ PX we set

D(f, g) = sup
x∈X

(f1(x)−̇g1(x)) ∨ sup
x∈X

(g2(x)−̇f2(x)).

Then D is an extended quasi-pseudometric on PX .
We shall call a function pair f minimal on (X , d) (among the
ample function pairs on (X , d)) if it is ample and whenever g is
ample on (X , d) and for each x ∈ X we have g1(x) ≤ f1(x) and
g2(x) ≤ f2(x), then g = f .
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Injective hull (directed span) of a T0-quasi-metric space

Zorn’s Lemma implies that below each ample function pair there is
a minimal ample pair (a more constructive method is due to
Dress).
By QX we shall denote the set of all minimal ample pairs on (X , d)
equipped with the restriction of D to QX × QX , which we shall
also denote by D. Then D is a (real-valued) T0-quasi-metric on
QX × QX .
For each x ∈ X we can define the minimal function pair

fx(y) = (d(x , y), d(y , x))

(whenever y ∈ X ) on (X , d). The map e defined by x 7→ fx
whenever x ∈ X defines an isometric embedding of (X , d) into
(QX ,D). Then (QX ,D) is called the q-hyperconvex hull of
(X , d).
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Some important facts

We have f = (f1, f2) ∈ QX if and only if the following equations
(∗) are satisfied:

f1(x) = sup{d(y , x)−̇f2(y) : y ∈ X}

and
f2(x) = sup{d(x , y)−̇f1(y) : y ∈ X}

whenever x ∈ X . In particular pairs satisfying these equations are
ample on (X , d).
A kind of ‘metric’ density of e(X ) in QX :For any y1, y2 ∈ QX , we
have that

D(y1, y2) =

sup{(D(fx1 , fx2)− D(fx1 , y1)− D(y2, fx2)) ∨ 0 : x1, x2 ∈ X}.
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Important facts

(1) Interesting case where
D(fx1 , y1) +D(y1, y2) +D(y2, fx2) = D(fx1 , fx2) for some x1, x2 ∈ X .

(2) f ∈ QX implies that f1(x)− f1(y) ≤ d−1(x , y) and
f2(x)− f2(y) ≤ d(x , y) whenever x , y ∈ X .

(3) supx∈X (f1(x)−̇g1(x)) = supx∈X (g2(x)−̇f2(x)) whenever
f , g ∈ QX .

(4) D(f , fx) = f1(x) and D(fx , f ) = f2(x) whenever x ∈ X and
f ∈ QX .
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The one-sided approach to the q-hyperconvex hull

The second component f2 of a minimal ample pair (f1, f2) on
(X , d) satisfies the following equation (∗∗) :

f2(x) = sup
y∈X

(d(x , y)−̇ sup
y ′∈X

(d(y ′, y)−̇f2(y ′))

whenever x ∈ X .
Indeed equation (∗∗) characterizes exactly those functions
f : X → [0,∞) that are second components of minimal ample
pairs on (X , d). An analogous result holds for the first components
of minimal ample pairs on (X , d).
These facts can be explained by the underlying Isbell conjugation
adjunction.
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q-hyperconvexity

A T0-quasi-metric space X is said to be q-hyperconvex if f ∈ QX

implies that there is an x ∈ X such that f = fx .

An intrinsic characterization of q-hyperconvexity is the following:
A T0-quasi-metric space (X , d) is q-hyperconvex if and only if,
given A ⊆ X and families of nonnegative reals (rx)x∈A and (sx)x∈A
such that d(x , y) ≤ rx + sy whenever x , y ∈ A, we have that⋂

x∈A(Cd(x , rx) ∩ Cd−1(x , sx)) 6= ∅.

A T0-quasi-metric space is q-hyperconvex if and only if it is
injective in the category of T0-quasi-metric spaces (and
nonexpansive maps).
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An explicit example

Example

Let a, b ∈ [0,∞) be such that a + b 6= 0 and let Y = [0, a]× [0, b].
Set

D((α1, α2), (β1, β2)) = (α1−̇β1) ∨ (α2−̇β2)

whenever (α1, α2), (β1, β2) ∈ Y . Then Y can be identified with
the q-hyperconvex hull of the T0-quasi-metric subspace
X = {(a, 0), (0, b)} of Y .

(0,b)

(a,0)(0,0)

(a,b)
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Example

(The general quasi-metric ‘segment’ Iab.) Let X = [0, 1]. Choose
a, b ∈ [0,∞) such that a + b 6= 0. Set dab(x , y) = (x − y)a if
x > y and dab(x , y) = (y − x)b if y ≥ x . Then ([0, 1], dab) is a
T0-quasi-metric space.

Let (X , d) be a T0-quasi-metric space and f , g ∈ QX with f 6= g .
Set a = D(f , g) and b = D(g , f ). Then there is an isometric
embedding ([0, 1], dab)→ (QX ,D) connecting g to f .

If we equip the unit interval [0, 1] with the restriction of τ(us) and
QX with the topology τ(D), then QX is contractible in the
classical sense.
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Tight extensions (1984: Dress, for the metric case)

Let X be a subspace of a T0-quasi-metric space (Y , d). Then Y is
called a tight extension of X if for any quasi-pseudometric e on
Y that satisfies e ≤ d and agrees with d on X ×X we have e = d .

Proposition

For any T0-quasi-metric space (X , d) the q-hyperconvex hull QX is
a (maximal) tight extension of e(X ).
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QX for metric space X

A nonempty partially ordered set X is called a complete lattice if∨
S and

∧
S exist for any subset S ⊆ X .

Example

The T0-quasi-metric space (R, u) is q-hyperconvex. The
specialization order ≤ of that space is the standard order on R;
hence (R,≤) is not a complete lattice.

(R, us) is not q-hyperconvex. ((R2, u × u−1) is the q-hyperconvex
hull of its diagonal.)
(Willerton) The hyperconvex hull of a metric space X is isometric
to the largest metric subspace containing e(X ) in the
q-hyperconvex hull of X .
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Endpoints in a T0-quasi-metric space (Isbell; Haihambo,
Agyingi, etc.)

Definition

Let (X , d) be a quasi-pseudometric space.
(a) A finite sequence (x1, x2, . . . , xn) in X is called collinear in
(X , d) provided that i < j < k ≤ n implies that
d(xi , xk) = d(xi , xj) + d(xj , xk).
(b) An element x ∈ X is called an endpoint of (X , d) provided
that there exists an element y in (X , d) such that d(y , x) > 0 and
for any z ∈ X collinearity of (y , x , z) in (X , d) implies that x = z .
We shall say that y witnesses that x is an endpoint.
(c) An element x ∈ X is called a startpoint of (X , d) if it is an
endpoint of (X , d−1).
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Endpoints in partially ordered sets

Let (X ,≤) be a partially ordered set and y ∈ X . We set
↑ y := {x ∈ X : y ≤ x} and ↓ y := {x ∈ X : y ≥ x}.

Lemma

Let (X ,≤) be a partially ordered set, d its natural T0-quasi-metric
and x , y ∈ X .
Then x is a startpoint of (X , d) witnessed by y if and only if x is a
minimal element in X\ ↓ y .
Dually, x is an endpoint of (X , d) witnessed by y if and only if x is
a maximal element in X\ ↑ y .
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Another example

Example

Let X be a set having at least two points and equipped with the
discrete order = . Then the natural T0-quasi-metric d of = on X is
the discrete metric. Each point of X is an endpoint and a
startpoint in (X , d), witnessed by any other point.
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Linearly ordered sets

Let (X ,≤) be a linearly ordered set and let a, b ∈ X be such that
a < b, but that there does not exist an element z ∈ X such that
a < z < b. The pair (a, b) is called a jump in X .

Proposition

Let (X ,≤) be a linearly ordered set equipped with its natural
T0-quasi-metric d . The first elements of jumps in X are exactly
the endpoints of (X , d). The second elements of jumps in X are
exactly the startpoints of (X , d).

x y
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Further examples

Example

For a set X with at least one element consider the complete lattice
(P(X ),⊆) equipped with its natural T0-quasi-metric d where
P(X ) is the powerset of X . Then the startpoints of (P(X ), d) are
exactly the singletons. The endpoints of (P(X ), d) are exactly the
complements of the singletons.

Example

Let R be the usual topology on the set R of the reals equipped
with set-theoretic inclusion as a partial order and let d be its
natural T0-quasi-metric. Then there are no startpoints and exactly
the complements of singletons are the endpoints in (R, d).
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Completely join-irreducible elements

Definition

An element x in a complete lattice X is called completely
join-irreducible if for each subset S of X , x =

∨
S implies that

x ∈ S .
Completely meet-irreducible elements are defined dually.
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Endpoints in complete lattices

Corollary

Let X be a complete lattice and d its natural T0-quasi-metric.
Then x ∈ X is a startpoint in (X , d) if and only if x is completely
join-irreducible.
Similarly, x ∈ X is an endpoint in (X , d) if and only if x is
completely meet-irreducible in (X , d).
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a

c

d

b

e

Figure: Hasse Diagram of
P4

b is maximal in X\ ↑ a.
c is maximal in X\ ↑ b.
d is maximal in X\ ↑ e.
e is maximal in X\ ↑ d .

In P4 the set of startpoints is {a, b, c , e} and the set of endpoints
is {b, c, d , e}. In particular b is an endpoint, although b is a
maximal lower bound of {d , e}.
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Join-density

A subset E of a partially ordered set X is called join-dense in X
provided that for each x ∈ X there exists E ′ ⊆ E such that
x =

∨
E ′.

Dually one defines the concept of a meet-dense subset of a
partially ordered set X .
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Application of join-density

Proposition

Let X be a partially ordered set and d its natural T0-quasi-metric.
(a) If E is a join-dense subset of X , then all startpoints of (X , d)
belong to E . Dually, if E is a meet-dense subset in X , then all
endpoints of (X , d) belong to E .
(b) If E is join- and meet-dense in X , then all startpoints (resp.
endpoints) of X are startpoints (resp. endpoints) of E .
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Some existence theorem

A T0-quasi-metric space (X , d) is called joincompact provided
that τ(d s) is compact.

Proposition

Let (X , d) be a joincompact T0-quasi-metric space with y1, y2 ∈ X
such that d(y1, y2) > 0. There exist a startpoint s in (X , d) and an
endpoint e in (X , d) such that (s, y1, y2, e) is collinear in (X , d).
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Joincompactness continued

Proposition

Let (X , d) be a joincompact T0-quasi-metric space. Then (QX ,D)
is joincompact and has exactly the same endpoints and startpoints
as (X , d).
The injective hull of a joincompact T0-quasi-metric space X can
be identified with the injective hull of the T0-quasi-metric subspace
B of X which consists of all the startpoints and endpoints of X .
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Injective partially ordered sets

(1967: B. Banaschewski and G. Bruns) A partially ordered set is
injective if and only if it is a complete lattice. (Here we use
monotonically increasing maps as morphisms.)
A map f : (X , d)→ ({0, 1}, u) is nonexpansive if and only if f is
monotonically increasing. (Of course, here u also denotes the
restriction of u to {0, 1}2.)
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The Dedekind-MacNeille completion

Let (X ,≤) be a partially ordered set and let A ⊆ X . Then we
define the set of upper bounds of A, that is,
Au = {x ∈ X : a ≤ x whenever a ∈ A} and the set of lower
bounds of A, that is, A` = {x ∈ X : a ≥ x whenever a ∈ A}.
Let DM(X) = {A ⊆ X : Au` = A}. The partially ordered set
(DM(X ),⊆) is a complete lattice, known as the
Dedekind-MacNeille completion of X .
Furthermore φ : X → DM(X ) defined by φ(x) =↓ x is an
order-embedding such that φ(X ) is both join-dense and
meet-dense in DM(X ).
This is indeed the characteristic property of the
Dedekind-MacNeille completion.
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Firmness of endpoints and startpoints

Proposition

Let (X ,≤) be a partially ordered set and d its natural
T0-quasi-metric. Furthermore let D be the natural T0-quasi-metric
of (DM(X ),⊆). Then (X , d) and (DM(X ),D) have the same
startpoints (resp. endpoints).
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Example P4 continued

a

c

d

b

e

Figure: Hasse Diagram of
P4: a is not an endpoint Figure: Hasse Diagram of

DM(P4): a not
meet-irreducible, b
meet-irreducible
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Conclusion

Considering P4 as a subset of DM(P4), in the complete lattice
DM(P4) the set of the startpoints of P4 becomes the set of the
(completely) join-irreducible elements of DM(P4) and the set of
the endpoints of P4 becomes the set of the (completely)
meet-irreducible elements of DM(P4).
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Completeness versus q-hyperconvexity

Example

Let X = {0, 1} be equipped with its usual order ≤ and with its
natural T0-quasi-metric d . Then (QX ,D) can be identified with
([0, 1], u) under the obvious inclusion X → [0, 1]. Hence (X , d) is
not q-hyperconvex, although (X ,≤) is a complete lattice.

Proposition

Let (X , d) be a bounded q-hyperconvex T0-quasi-metric space and
≤ its specialization order. Then (X ,≤) is a complete lattice.
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q-hyperconvex hull as an extension of Dedekind-MacNeille
completion

Let (X ,≤) be a partially ordered set and d its natural
T0-quasi-metric. Furthermore let FX be the set of all those
minimal ample function pairs (f1, f2) on (X , d) that attain only the
values 0 and 1.
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Lemma

In this situation consider an arbitrary pair (f1, f2) of functions
X → {0, 1}. Then the following conditions are equivalent:
(a) (f1, f2) ∈ FX .
(b)

f1(x) = sup{d(y , x)−̇f2(y) : y ∈ X}

and
f2(x) = sup{d(x , y)−̇f1(y) : y ∈ X}

whenever x ∈ X.
(c) f −11 {0} = (f −12 {0})u and f −12 {0} = (f −11 {0})`.
(d) (f −12 {0})u` = f −12 {0} and f1(x) = supy∈X (d(y , x)−̇f2(y))
whenever x ∈ X .
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Embedding DM(X ) into (QX ,D)

Proposition

Let (X ,≤) be a partially ordered set with its natural
T0-quasi-metric d and let FX be the set of all those minimal ample
function pairs (f1, f2) on (X , d) that only attain the values 0 and 1.

Then the map ψ : (FX ,≤D)→ (DM(X ),⊆) defined by
(f1, f2) 7→ f −12 {0} is an order-isomorphism between FX (equipped
with the specialization order ≤D induced on FX by the
T0-quasi-metric D of the q-hyperconvex hull of (X , d)) and the
Dedekind-MacNeille completion (DM(X ),⊆) of X . Furthermore
for each x ∈ X , ψ(fx) =↓ x .
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Characterization of DM(X ) as a subspace of QX

Remark

Given a partially ordered set (X ,≤) equipped with its natural
T0-quasi-metric d and its q-hyperconvex hull Q(X ,d), the subspace
S identified above with DM(X ) in Q(X ,d) is characterized by the
property that it is the largest subspace of Q(X ,d) containing e(X )
such that the T0-quasi-metric D restricted to S × S attains only
values in {0, 1}.
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Final example

Example

Let X = {0, 1} be equipped with the discrete order = .
The natural T0-quasi-metric on X is the discrete metric.
Furthermore (QX ,D) can be identified with the set
Y = [0, 1]× [0, 1] equipped with the T0-quasi-metric

D((α1, α2), (β1, β2)) = (α1−̇β1) ∨ (α2−̇β2)

whenever (α1, α2), (β1, β2) ∈ Y ,
where 0 is identified with (0, 1) and 1 is identified with (1, 0).
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Final example continued I

(0,0) (1,0)

(0,1) (1,1)

Figure: Unit square equipped with the maximum T0-quasi-metric; it is
QX for the subspace X given below

(0,1)

(1,0)

Figure: (X ,=), the two element discrete metric space
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Final example continued II

(0,1)

(1,0)

Figure: MX as subspace of QX is isometric to the real unit interval
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Final example continued III

The Dedekind-MacNeille completion of (X , d) consists only of the
four corner points of Y = QX endowed with the induced
specialization order on Y .

(0,1)

(1,0)(0,0)

(1,1)

Figure: DM(X ,=); drawn by its Hasse Diagram (orientation not
according to usual convention: (0, 0) is bottom and (1, 1) is top)
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Summary

Proposition

(Isbell) A compact injective metric space Y has a smallest closed
subset B such that the hyperconvex hull of B is equal to Y .

Proposition

(Davey and Priestley) A lattice L with no infinite chains is
order-isomorphic to the Dedekind-MacNeille completion of the
partially ordered set J (L) ∪M(L), where J (L) denotes the set of
(completely) join-irreducible elements of L and M(L) denotes the
set of (completely) meet-irreducible elements of L.
Furthermore J (L) ∪M(L) is the smallest subset of L which is
both join- and meet-dense in L.
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THANK YOU!
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