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In 1922, Banach published his famous fixed point theorem wich is stated as
follows.

Theorem 1 (Banach). Let (X, d) be a complete metric space. If T is a
self-mapping of X such that there is a constant ¢ € [0, 1) satisfying

d(Tx, Ty) < cd(x,y), (1)

for all x,y € X, then T has a unique fixed point.
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Kannan (1968) proved the following fixed point theorem which is
independent from Banach's fixed point theorem.

Theorem 2 (Kannan). Let (X, d) be a complete metric space. If T is a
self-mapping of X such that there is a constant ¢ € [0,1/2) satisfying

d(Tx, Ty) < c(d(x, Tx) + d(y, Ty)), (2)

for all x,y € X, then T has a unique fixed point.

WATS 2016, Valencia June 22, 2016 3/13



Later on, Chatterjea (1971) obtained the following variant of Kannan's
fixed point theorem.

Theorem 3 (Chatterjea). Let (X, d) be a complete metric space. If T is a
self-mapping of X such that there is a constant ¢ € [0,1/2) satisfying

d(Tx, Ty) < c(d(x, Ty) + d(y, Tx)), (3)

for all x,y € X, then T has a unique fixed point.
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The above results suggest the following well-established notion

Definition 1. Let T be a self-map of a metric space (X, d). Then T is
called a Banach contraction (resp. a Kannan mapping, a Chatterjea
mapping) if T satisfies condition (1) (resp. condition (2), condition (3)) for
all x,y € X.

Contrarily to the Banach contractions, not every Kannan mapping is a

continuous mapping and not every Chatterjea mapping is a continuous
mapping.
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On the other hand, Banach's fixed point theorem does not characterize
metric completeness. Indeed, there exist examples of non complete metric
spaces for which every Banach contraction has a fixed point. However,
both Kannan's fixed point theorem and Chatterjea’s fixed point theorem
characterize metric completeness, as Subrahmanyam (1975) showed.

Theorem 4 (Subrahmanyam). For a metric space (X, d) the following
conditions are equivalent.

(1) (X, d) is complete.

(2) Every Kannan mapping on X has a fixed point.

(3) Every Chatterjea mapping on X has a fixed point.
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In his well-known paper published in 1976, Caristi proved the following
important fixed point theorem that also allows to characterize metric
completeness and is “equivalent” to the Ekeland Variational Principle.

Theorem 5 (Caristi). Let (X, d) be a complete metric space. If T is a
self-mapping of X such that there is a lower semicontinuous function
© : X — [0, 00) satisfying

d(x, Tx) < ¢(x) — (Tx), (4)

for all x € X, then T has a fixed point.
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A self-mapping T on a metric space (X, d) for which there is a lower
semicontinuous function ¢ : X — [0, 00) satisfying condition (4) for all
x € X is called a Caristi mapping.

Kirk (1976) proved the “if" part of the following characterization.

Theorem 6 (Kirk). A metric space (X, d) is complete if and only if every
Caristi mapping on X has a fixed point.
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The relationship between Banach mappings and Caristi mappins, as well as
between Kannan mappings (resp. Chatterjea mappings) and Caristi
mappings has been considered by several authors. Thus, following a
construction suggested by Weston (1977), Park (1984) asserted that if T is
a Chatterjea mapping on a metric space (X, d), with constant ¢ € [0,1/2),
then the function ¢ : X — [0, 00) defined as

_ l1-c¢
S 1-2¢

o(x) d(x, Tx), (5)

for all x € X, is a Caristi mapping, and, hence, every Chatterjea mapping is
a Caristi mapping.
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CHARACTERIZATIONS OF METRIC COMPLETENESS

BY

SEHIE PARK (SEOUL)

In this paper, we give some necessary and sufficient conditions for a
metric space (X, d) to be complete. Such characterizations of metric com-
pleteness are given mainly by results relevant to Caristi’s fixed point theorem.
Works of Cantor, Kuratowski, Ekeland, Caristi, Kirk, Wong, Weston, Ciri¢,
Hu, Reich, Subrahmanyam, and others are combined.

Kuratowski [18] first noticed that the Cantor intersection theorem
characterizes the metric completeness. Hu [12] showed that a metric space is
complete if and only if any Banach contraction on closed subsets thereof has
a fixed point. On the other hand, Kirk [15] showed that Caristi’s theorem
characterizes the metric completeness. Later, motivated by Wong’s proof
[27] of Caristi's theorem, Weston [26] showed that a metric space X is
complete if and only if X satisfies a condition of Ekeland [10], [11], that is,
for each lower semicontinuous function h: X —(—oo, cv) bounded from
below on X, there is a point p in X such that h(p)—h(x) < d(p, x) for every
point x in X. Reich [23] and Subrahmanyam [25] also obtained character-
izations of the metric completeness using Kannan’s result [13] similar to the
Banach contraction principle, which is known to be a consequence of
Caristi’s theorem. On the other hand, Kolodner [17] and Boyd and Wong
[2] noticed that the Banach contraction principle follows from the Cantor
intersection theorem.

Now we combine those results and state our characterizations of the
metric completeness. Let @ denote the set of nonnegative integers and ~ the
closure operation.

THEOREM. For a metric space (X, d), the following statements are
equivalent:

(1) X is complete.

(ii) For every sequence {a,},., of positive numbers converging to 0 and
every sequence XF,},., of nonempty closed subsets of X such that
Fo,iy ©F,, new, and each F, is a union of finite number of subsets of

a
diameter less than a,, we have (\ F,# Q.
n=1
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(iii) For every sequence \F,},., of nonempty closed subsets of X such that
Foiy©F,, new, and the sequence {diamF,},., converges to 0, we have
o0
N F,#0.
n=1

(iv) Every lower semicontinuous function h: X —(—oc, oo) which is
bounded from below has a d-point p in X, that is,

h(p)—h(x) < d(p, x)
for every point x in X, x # p.

(v) For every selfmap f of X with a lower semicontinuous function
V. X (=00, o) which is bounded from below and such that, for each x in
X with x # fx, there exists y in X —|x} satisfying

d(x, y) < V(x)—WV(y),
f has a fixed point.

(vi) For every selfmap f of X such that there exists a lower semicontinuous
Junction @: X —(—oc0, o) which is bounded from below and satisfies

d(x, fx) < ¢(x)—o(fx)
for each x in X, f has a fixed point.
~ (vii) For every selfmap f of X such that there exist a ue X and an
ae[0, 1) satisfying
d(fx, f*x) < ad(x, fx)

for each x in {f"u},., and f is continuous on {f"u}, f has a fixed point in
fru}

(viti) For every selfmap f of X such that there exist a ucX and an
e [0, 1) satisfying

d(fx, fy) < amax {d(x, y), d(x, fx), d(y, f3), [d(x, ) +d(y, fx)]/2}

Jor all x, ye{f"u,,f has a (unique) fixed point in {f"u}.
Proof. (i)=(i1) is given in [18], [19], and (ii) = (iii) is clear.
(ii1) = (iv). We order X by defining x <y iff d(x, y) < h(x)— h(y). For
each xe X, let X(x) = {yeX | x < y}. We construct an increasing sequence
{x,} as follows: Choose xqe X arbitrarily, and if x,, ..., x, are given, then
choose x,.; € X (x,) with h(x,, ) < infh(X (x,))+ 1/n. Thus x, < x,,, and for
each xe X (x,,,) = X(x,) we have 4

h(x,4+1)—1/n < inf h(X (x,) < h(x)

and
d(x) xn+l) < h(xn+1)_h(x)'
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is a Banach contraction on {/"xo} ; hence f satisfies the hypothesis of (viii) on
1/"xo} . However, f does not have a fixed point.

This completes our proof.

Remarks. (1) Kuratowski [18] obtained (i) =(1i) as a generalization of
the Cantor intersection theorem (i) = (iii) (see [197]). He also noticed that
(1) <= (iii).

(2) (1) =(iv) was actually due to Ekeland [10], [11]. Weston proved
(1) =>(iv). Our proof of (iii) = (iv) is based on the proof of (i) = (vi) of Penot
[22].

(3) Caristi’s fixed point theorem (1) = (vi) with ¢: X — [0, o) was given
in [7]. It is actually equivalent to (1) = (iv) announced in 1972 by Ekeland
[10], whose result is an abstraction of a lemma due to Bishop and Phelps
[1]. Various proofs of Caristi’s theorem were given by Brgnsted [4], [5],
Browder [6], Kasahara [14], Kirk [15], Pasicki [21], Penot [22], Siegel
[24], and Wong [27]. Condition (vi) was due to Brgnsted [5].

(4) Kirk [15] showed (i) =(vi). Wong [27] claimed that (i) =>(vi) implies
(i) =(v). A proof of (v) =(iv) was also given by Wong [28]. Brézis and
Browder [3] showed that (i) = (vi) is equivalent to (1) = (iv).

(5) Kirk and Caristi [16] noted that () =(vi) implies the Banach
contraction principle. Weston [26] noted that, by putting

o(x) = (1-2x)"1(1 —a)d(x, fx),

the contractive type condition

Ad(fx, fy) < ald(x, ) +d(y, f0)l, o <172,

implies the hypothesis of (vi).

(6) In the proof of (vi) = (vii), f and % are continuous on { f"u} . Browder
[6] observed that, in (1) = (vi), if f is continuous, then lim f"x exists for all
xeX and it is fixed under f.

(7) A variant of (1) = (vili) was first given by Cirié [8], and later
extended by a number of authors. Pal and Maiti [20] considered an
extended form of (viii), which is a particular case of (vii).

(8) The basic idea of the proof of (viii) = (i) is due to Hu [12]. Reich
[23] used Hu’s idea with respect to Kannan’s contractive condition [137:

A, ) <ald(x, f)+d, 1)),  «<1)2.

Similar results are given also by Subrahmanyam [25].

(9) Kolodner [17] and Boyd and Wong [2] noticed that the Cantor
intersection theorem implies the Banach contraction principle. However,
using an example of Connell [9], Subrahmanyam [25] noticed that the



In this direction, Shioji, Suzuki and Takahashi (1998), and Petrusel (2003)
claim that every Banach contraction and every Kannan mapping on a
metric space is a Caristi mapping. In fact (see e.g. Petrusel (2003)) if T is
a self-mapping on a metric space (X, d) the following facts are asserted:

(A) If T is a Banach contraction, with constant ¢ € [0, 1), then the
function ¢ : X — [0, 00) defined as

1

= 1f(—_d(x, Tx), (6)

e(x)

for all x € X, is a Caristi mapping on X.

(B) If T is a Kannan mapping, with constant ¢ € [0,1/2), then the
function ¢ : X — [0, 00) defined as in (5) for all x € X, is a Caristi
mapping on X.
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CONTRACTIVE MAPPINGS, KANNAN MAPPINGS
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ABSTRACT. In this paper, we first study the relationship between weakly con-
tractive mappings and weakly Kannan mappings. Further, we discuss charac-
terizations of metric completeness which are connected with the existence of
fixed points for mappings. Especially, we show that a metric space is complete
if it has the fixed point property for Kannan mappings.

1. INTRODUCTION

Let X be a metric space with metric 4. Then a function p from X x X into

[0,00) is called a w-distance on X if it satisfies the following:

(1) p(z,s) < plz,y) + ply, 2) for all z,y,2 € X;

(2) p is lower semicontinuous in its second variable;

(3) for each & > 0, there exists ¢ > 0 guch that p(z,z) < é and p(z,y¥) < & imply

diz,y) < e.

The concept of a w-distance was first introduced by Kada, Suzuki and Takahashi [6].
They give some examples of w-distance and improved Caristi’s fixed point theorem
[2], Ekeland’s variational principle [4] and the nonconvex minimization theorem
according to Takahashi [12]. We denote by W (X) the set of all w-distances on X.

A mapping 1" from X into itself is called weakly contractive [11] if there exist
pe€ W(X) and » € [0,1) such that

p(Tz, Ty) < rp(z,y) forall z,yeX.

In particular, if p = d, T is called contractive. Suzuki and Takahashi [11] proved
that a metric space is complete if and only if it has the fixed point property for
weakly contractive mappings. A mapping T from X into itself is called weakly

Kannan [10] if there exist p € W(X) and o € [0,1/2) such that
p(Tr,Ty) < (p(Tr, z) + p(Ty,y)) for all =,y € X,
or
p(l'z, Ty) < a(p(Ta:,a:) -+ p(y,Ty)) forall z,ye X.
In particular, if p = d, T' is called Kannan [7]. Suzuki [10] proved that a complete
metric space has the fixed point property for weakly Kannan mappings. On the

Received by the editors October 25, 1996 and, in revised form, February 27, 1997,

1991 Mathernatics Subject Classification. Primary 54E50.

Key words and phrases. Completeness, contractive mapping, Kannan mapping, fixed point,
mean.

©1998 American Mathematical Society
3117

License or copyright restrictions may apply to redistribution; see hitp://www.ams.org/journal-terms-of-use



3118 N. SHIOJI, T. SUZUKI, AND W. TAKAHASHI

other hand, characterizations of metric completeness have been discussed by many
authors (cf. [3, 5, 8, 9, 12]). Tt has been known that the fixed point property
for contractive mappings does not characterize metric completeness. For example,
gee [11]. But Hu [5] proved that a metric space is complete if every closed subspace
has the fixed point property for contractive mappings. Reich [9] also proved that a
metric space is complete if every closed subspace has the fixed point property for
Kannan mappings. We recall that a mapping T from a metric space X into itself
is said to be Caristi if there exists a lower semicontinuous function ¢ from X into
[0,o0) such that d(z, Tz) < e(x)—@(Tz) for all z € X. Note that Caristi mappings
include Kannan mappings and contractive mappings. Kirk [8] proved that a metric
space is complete if it has the fixed peint property for Caristi mappings. Thus
Caristi mappings characterize metric completeness whereas contractive mappings
do not. This leaves open the question whether Kannan mappings characterize
metric completeness or not.

In this paper, we first study the relationship between weakly contractive map-
pings and weakly Kannan mappings. Further, we discuss characterizations of metric
completeness which are connected with the existence of fixed points for mappings.
Especially, we show that a metric space is complete if it has the fixed point property
for Kannan mappings.

2. PRELIMINARIES

Throughout this paper, we denote by M, Z, () and R the sets of positive integers,
integers, rational numbers and real numbers, respectively.

Let X be a metric space with metric d. A w-distance p on X is called symmetric
if p(z,y) = ply,z) for all z,y € X. We denote by W5(X) the set of all symmetric
wrcistances on X. Note that the metric d iz an element in Wi (X). We denote
by WCL(X) the set of all mappings 7' from X into itself such that there exist
pe W(X) and r £ [0,1) satistying

p(f'z,Ty) < rp(z,y) forall z,ye X,

Le., the set of all weakly contractive mappings from X Into itsell. We define the sets
W (X)), WC(X), WE1(X), WHE2(X) and WH(X) of mappings from X into
itself as follows: T' € WC2(X) if and only if there exist p £ W(X) and » € [0,1)
such that

Tz, Ty) < rply,z) forall =z,yeX;
T € W5 (X) if and only if there exist p £ Wo(X) and » € [0,1) such that
p(Tx,Ty) <rp(z,y) forall z,yeX;
T e WK (X) if and only if there exist p € W(X) and o € [0,1/2) such that
p(Tz,Ty) < ce(p(Ts':, z)+p(Ty, y)) for all =, y¢e X;
T € WHE,(X) if and only if there exist p € W(X) and a € [0,1/2) such that
p(Tz,Ty) < ce(p(Ts':, z) + ply, Ty)] for all =, y¢e X;
T'e WHu(X) if and only if there exist p € W(X) and o € [0,1/2) such that
p(lz, Ty) < Oa(p(Ta:,:c) + p(Ty,y)) for all z,ye X.
We recall ' is weakly Kannan if T' e WHE; (X) U WHE(X).
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CARISTI TYPE OPERATORS AND APPLICATIONS

ADRIAN PETRUSEL

Dedicated to Professor Gheorghe Micula at his 60'" anniversary

1. Introduction

Caristi’s fixed point theorem states that each operator f from a complete
metric space (X, d) into itself satisfying the condition:
there exists a proper lower semicontinuous function ¢ : X — R} U {+o0}
such that:
d(z, f(z)) + o(f(z)) < ¢(x), for each z € X (1.1)
has at least a fixed point z* € X, i. e. z* = f(z*). (see Caristi [4]).
For the multi-valued case, there exist several results involving multi-valued
Caristi type conditions. For example, if F' is a multi-valued operator from a com-
plete metric space (X, d) into itself and if there exists a proper, lower semicontinuous
function ¢ : X — Ry U {+oo0} such that

for each x € X, there is y € F(z) so that d(z,y) + ¢(y) < ¢(x), (1.2)

then the multi-valued map F has at least a fixed point z* € X, i. e. 2* € F(x*). (see
Mizoguchi-Takahashi [11]).
Moreover, if F' satisfies the stronger condition:

for each z € X and each y € F(x) we have d(z,y) + ¢(y) < p(z), (1.3)

then the multi-valued map F' has at least a strict fixed point z* € X, i. e. {a*} =
F(z*). (see Maschler-Peleg [10]).

Another result of this type was proved by L. van Hot, as follows.

If F' is a multi-valued operator with nonempty closed values and ¢ : X —
Ry U {400} is a lower semi-continuous function such that the following condition
holds:

for each z € X, inf { d(z,y) + ¢(y) : y € F(z) } < ¢(x), (1.4)

then F' has at least a fixed point. (see van Hot [6])

There are several extensions and generalizations of these important principles
of nonlinear analysis (see the references list and also the bibliography therein)

The purpose of this paper is to present several new results and open problems
for single-valued and multi-valued Caristi type operators between metric spaces. Also,
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2000 Mathematics Subject Classification. 4TH10, 54H25.
Key words and phrases. fixed point, w-distance, multifunction.

115



ADRIAN PETRUSEL
Then a function p: X x X — Ry, defined by

Y
p(z,y) == | / f(u)dul, for every z,y € X

is a w-distance on X.

For other examples and related results, see Kada, Suzuki and Takahashi [7].
Some important properties of the w-distance are contained in:

Lemma 2.1. Let (X,d) be a metric space and p be a w-distance on X. Let
(Zn)neN, (Yn)nen be sequences in X, let (an)nen, (Bn)nen be sequences in Ry con-
verging to 0 and let y,z € X. Then the following hold:

(1) if p(Tny Tm) < @, for any n,m € N with m > n, then (z,,) is a Cauchy
sequence.

(ii) if p(y, xn) < ap, for any n € N, then (x,) is a Cauchy sequence.

(i53) if p(Tn, yn) < an and p(xy, 2) < By, for anyn € N then (y,) converges
to z.

3. Single-valued Caristi type operators

If f: X — X is an a-contraction, then it is well-known (see for exam-
ple Dugundji-Granas [5]) that f is a Caristi type operator with a function ¢(x) =
ﬁd(w, f(x)). Also, Caristi type mappings include Reich type operators and in par-
ticular Kannan operators. Indeed, if f satisfies a Reich type condition with constants
a, b, c, then f is a Caristi type operator with a function ¢(z) = ﬁd(x, f(x)).

Moreover, if f : X — X satisfies the following condition (see I. A. Rus (1972),
[14]):

there is a € [0, 1] such that d(f(z), f*(x)) < ad(z, f(z)), for each x € X

then f is a Caristi operator with a function ¢(z) = -d(z, f(z)).

Hence, the class of single-valued Caristi type operators is very large, including
at least the above mentioned types of contractive mappings.

Some characterizations of metric completeness have been discussed by several
authors such as Weston, Kirk, Suzuki, Suzuki and Takahashi, Shioji, Suzuki and
Takahashi, etc. For example, Kirk [8] proved that a metric space is complete if it
has the fixed point property for Caristi mappings. Moreover, Shioji, Suzuki and
Takahashi proved in [15] that a metric space is complete if and only if it has the
fixed point property for Kannan mappings. On the other hand, it is well-known
that the fixed point property for a-contraction mappings does not characterize metric
completeness, see for example Suzuki-Takahashi [16]. Thus, Kannan mappings and
Caristi mappings characterize metric completeness, while contraction mappings do
not. Regarding to the problem of characterizations of metric completeness by means
of contraction mappings, Suzuki and Takahashi and independently M. C. Anisiu and
V. Anisiu showed (see [16] respectively [1]) that a convex subset ¥ of a normed space
is complete if and only if every contraction f :Y — Y has a fixed point in Y.

The following generalization of Caristi’s theorem is proved in Kada-Suzuki-
Takahashi [7]:
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It is easy to check that assertion (A) is correct. However, in the case that
T is a Kannan mapping, or a Chatterjea mapping, on a metric space

(X, d), the function ¢ given by (5) indeed satisfies

d(x, Tx) < ¢(x) — ¢(Tx) for all x € X, but, unfortunately, the function

x — d(x, Tx) is not lower semicontinuous in general, as Example 1 below
shows. Therefore, it seems that the following question still is open: Is every
Kannan mapping on a metric space X, a Caristi mapping on X 7
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Example 1. Let X = [0,00) and let d be the usual metric on X. Fix
0 €(0,1) and define T : X — X as

Tx=0if x€[0,1—9);
Tx=x/4ifxe[l—-0,1), and
Tx=(1-0)/4if x> 1

Then T is both a Kannan mapping and a Chatterjea mapping on (X, d).
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Finally, define f : X — [0, 00) as f(x) = d(x, Tx). We show that f is not
lower semicontinuous at x = 1.

Indeed, choose a sequence (xp), in X such that x, € (1 —6,1) and
d(1,xp) — 0. We have

F1)—fx) = d (11‘5> 4 ) = 3H0

4 4 4 4
3+57§_§
4 4 4

for all n, so f is not lower semicontinuous at x = 1.
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