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In 1922, Banach published his famous fixed point theorem wich is stated as
follows.

Theorem 1 (Banach). Let (X , d) be a complete metric space. If T is a
self-mapping of X such that there is a constant c ∈ [0, 1) satisfying

d(Tx ,Ty) ≤ cd(x , y), (1)

for all x , y ∈ X , then T has a unique fixed point.
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Kannan (1968) proved the following fixed point theorem which is
independent from Banach’s fixed point theorem.

Theorem 2 (Kannan). Let (X , d) be a complete metric space. If T is a
self-mapping of X such that there is a constant c ∈ [0, 1/2) satisfying

d(Tx ,Ty) ≤ c(d(x ,Tx) + d(y ,Ty)), (2)

for all x , y ∈ X , then T has a unique fixed point.
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Later on, Chatterjea (1971) obtained the following variant of Kannan’s
fixed point theorem.

Theorem 3 (Chatterjea). Let (X , d) be a complete metric space. If T is a
self-mapping of X such that there is a constant c ∈ [0, 1/2) satisfying

d(Tx ,Ty) ≤ c(d(x ,Ty) + d(y ,Tx)), (3)

for all x , y ∈ X , then T has a unique fixed point.
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The above results suggest the following well-established notion

Definition 1. Let T be a self-map of a metric space (X , d). Then T is
called a Banach contraction (resp. a Kannan mapping, a Chatterjea
mapping) if T satisfies condition (1) (resp. condition (2), condition (3)) for
all x , y ∈ X .

Contrarily to the Banach contractions, not every Kannan mapping is a
continuous mapping and not every Chatterjea mapping is a continuous
mapping.
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On the other hand, Banach’s fixed point theorem does not characterize
metric completeness. Indeed, there exist examples of non complete metric
spaces for which every Banach contraction has a fixed point. However,
both Kannan’s fixed point theorem and Chatterjea’s fixed point theorem
characterize metric completeness, as Subrahmanyam (1975) showed.

Theorem 4 (Subrahmanyam). For a metric space (X , d) the following
conditions are equivalent.
(1) (X , d) is complete.
(2) Every Kannan mapping on X has a fixed point.
(3) Every Chatterjea mapping on X has a fixed point.
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In his well-known paper published in 1976, Caristi proved the following
important fixed point theorem that also allows to characterize metric
completeness and is “equivalent” to the Ekeland Variational Principle.

Theorem 5 (Caristi). Let (X , d) be a complete metric space. If T is a
self-mapping of X such that there is a lower semicontinuous function
ϕ : X → [0,∞) satisfying

d(x ,Tx) ≤ ϕ(x)− ϕ(Tx), (4)

for all x ∈ X , then T has a fixed point.
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A self-mapping T on a metric space (X , d) for which there is a lower
semicontinuous function ϕ : X → [0,∞) satisfying condition (4) for all
x ∈ X is called a Caristi mapping.
Kirk (1976) proved the “if” part of the following characterization.

Theorem 6 (Kirk). A metric space (X , d) is complete if and only if every
Caristi mapping on X has a fixed point.

WATS 2016, Valencia June 22, 2016 8 / 13



The relationship between Banach mappings and Caristi mappins, as well as
between Kannan mappings (resp. Chatterjea mappings) and Caristi
mappings has been considered by several authors. Thus, following a
construction suggested by Weston (1977), Park (1984) asserted that if T is
a Chatterjea mapping on a metric space (X , d), with constant c ∈ [0, 1/2),
then the function ϕ : X → [0,∞) defined as

ϕ(x) =
1− c
1− 2c

d(x ,Tx), (5)

for all x ∈ X , is a Caristi mapping, and, hence, every Chatterjea mapping is
a Caristi mapping.
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In this direction, Shioji, Suzuki and Takahashi (1998), and Petrusel (2003)
claim that every Banach contraction and every Kannan mapping on a
metric space is a Caristi mapping. In fact (see e.g. Petrusel (2003)) if T is
a self-mapping on a metric space (X , d) the following facts are asserted:

(A) If T is a Banach contraction, with constant c ∈ [0, 1), then the
function ϕ : X → [0,∞) defined as

ϕ(x) =
1

1− c
d(x ,Tx), (6)

for all x ∈ X , is a Caristi mapping on X .

(B) If T is a Kannan mapping, with constant c ∈ [0, 1/2), then the
function ϕ : X → [0,∞) defined as in (5) for all x ∈ X , is a Caristi
mapping on X .
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1. Introduction

Caristi’s fixed point theorem states that each operator f from a complete
metric space (X, d) into itself satisfying the condition:

there exists a proper lower semicontinuous function ϕ : X → R+ ∪ {+∞}
such that:

d(x, f(x)) + ϕ(f(x)) ≤ ϕ(x), for each x ∈ X (1.1)
has at least a fixed point x∗ ∈ X, i. e. x∗ = f(x∗). (see Caristi [4]).
For the multi-valued case, there exist several results involving multi-valued

Caristi type conditions. For example, if F is a multi-valued operator from a com-
plete metric space (X, d) into itself and if there exists a proper, lower semicontinuous
function ϕ : X → R+ ∪ {+∞} such that

for each x ∈ X, there is y ∈ F (x) so that d(x, y) + ϕ(y) ≤ ϕ(x), (1.2)

then the multi-valued map F has at least a fixed point x∗ ∈ X, i. e. x∗ ∈ F (x∗). (see
Mizoguchi-Takahashi [11]).

Moreover, if F satisfies the stronger condition:

for each x ∈ X and each y ∈ F (x) we have d(x, y) + ϕ(y) ≤ ϕ(x), (1.3)

then the multi-valued map F has at least a strict fixed point x∗ ∈ X, i. e. {x∗} =
F (x∗). (see Maschler-Peleg [10]).

Another result of this type was proved by L. van Hot, as follows.
If F is a multi-valued operator with nonempty closed values and ϕ : X →

R+ ∪ {+∞} is a lower semi-continuous function such that the following condition
holds:

for each x ∈ X, inf { d(x, y) + ϕ(y) : y ∈ F (x) } ≤ ϕ(x), (1.4)
then F has at least a fixed point. (see van Hot [6])

There are several extensions and generalizations of these important principles
of nonlinear analysis (see the references list and also the bibliography therein)

The purpose of this paper is to present several new results and open problems
for single-valued and multi-valued Caristi type operators between metric spaces. Also,
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Then a function p : X ×X → R+, defined by

p(x, y) := |
∫ y

x

f(u)du|, for every x, y ∈ X

is a w-distance on X.
For other examples and related results, see Kada, Suzuki and Takahashi [7].
Some important properties of the w-distance are contained in:

Lemma 2.1. Let (X, d) be a metric space and p be a w-distance on X. Let
(xn)n∈N, (yn)n∈N be sequences in X, let (αn)n∈N, (βn)n∈N be sequences in R+ con-
verging to 0 and let y, z ∈ X. Then the following hold:

(i) if p(xn, xm) ≤ αn, for any n, m ∈ N with m > n, then (xn) is a Cauchy
sequence.

(ii) if p(y, xn) ≤ αn, for any n ∈ N, then (xn) is a Cauchy sequence.
(iii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn, for any n ∈ N then (yn) converges

to z.

3. Single-valued Caristi type operators

If f : X → X is an a-contraction, then it is well-known (see for exam-
ple Dugundji-Granas [5]) that f is a Caristi type operator with a function ϕ(x) =

1
1−ad(x, f(x)). Also, Caristi type mappings include Reich type operators and in par-
ticular Kannan operators. Indeed, if f satisfies a Reich type condition with constants
a, b, c, then f is a Caristi type operator with a function ϕ(x) = 1−c

1−a−b−cd(x, f(x)).
Moreover, if f : X → X satisfies the following condition (see I. A. Rus (1972),

[14]):

there is a ∈ [0, 1[ such that d(f(x), f2(x)) ≤ ad(x, f(x)), for each x ∈ X

then f is a Caristi operator with a function ϕ(x) = 1
1−ad(x, f(x)).

Hence, the class of single-valued Caristi type operators is very large, including
at least the above mentioned types of contractive mappings.

Some characterizations of metric completeness have been discussed by several
authors such as Weston, Kirk, Suzuki, Suzuki and Takahashi, Shioji, Suzuki and
Takahashi, etc. For example, Kirk [8] proved that a metric space is complete if it
has the fixed point property for Caristi mappings. Moreover, Shioji, Suzuki and
Takahashi proved in [15] that a metric space is complete if and only if it has the
fixed point property for Kannan mappings. On the other hand, it is well-known
that the fixed point property for a-contraction mappings does not characterize metric
completeness, see for example Suzuki-Takahashi [16]. Thus, Kannan mappings and
Caristi mappings characterize metric completeness, while contraction mappings do
not. Regarding to the problem of characterizations of metric completeness by means
of contraction mappings, Suzuki and Takahashi and independently M. C. Anisiu and
V. Anisiu showed (see [16] respectively [1]) that a convex subset Y of a normed space
is complete if and only if every contraction f : Y → Y has a fixed point in Y .

The following generalization of Caristi’s theorem is proved in Kada-Suzuki-
Takahashi [7]:
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It is easy to check that assertion (A) is correct. However, in the case that
T is a Kannan mapping, or a Chatterjea mapping, on a metric space
(X , d), the function ϕ given by (5) indeed satisfies
d(x ,Tx) ≤ ϕ(x)− ϕ(Tx) for all x ∈ X , but, unfortunately, the function
x → d(x ,Tx) is not lower semicontinuous in general, as Example 1 below
shows. Therefore, it seems that the following question still is open: Is every
Kannan mapping on a metric space X , a Caristi mapping on X ?
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Example 1. Let X = [0,∞) and let d be the usual metric on X . Fix
δ ∈ (0, 1) and define T : X → X as

Tx = 0 if x ∈ [0, 1− δ);
Tx = x/4 if x ∈ [1− δ, 1), and
Tx = (1− δ)/4 if x ≥ 1.

Then T is both a Kannan mapping and a Chatterjea mapping on (X , d).
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Finally, define f : X → [0,∞) as f (x) = d(x ,Tx). We show that f is not
lower semicontinuous at x = 1.
Indeed, choose a sequence (xn)n in X such that xn ∈ (1− δ, 1) and
d(1, xn)→ 0. We have

f (1)− f (xn) = d
(
1,

1− δ
4

)
− d

(
xn,

xn

4

)
=

3+ δ

4
− 3xn

4

>
3+ δ

4
− 3

4
=
δ

4
,

for all n, so f is not lower semicontinuous at x = 1.
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