

Hereditarily indecomposable continua and entropy. (joint work with Jan P. Boroński and Alex Clark)

Piotr Oprocha

AGH

Faculty of Applied Mathematics AGH University of Science and Technology, Kraków, Poland

UPV, Valencia, Jul 13, 2017

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 1 / 35

4 3 4 3 4 3 4

Jan Boroński, University of Ostrava, Czech Republic

Alex Clark, University of Leicester, UK

Piotr Oprocha (AGH)

Continua and entropy

3 UPV, 2017 2 / 35

-

・ロト ・ 日 ト ・ ヨ ト ・

Indecomposable arc-like continua

- continuum C is arc-like if for every ε > 0 there is an ε-map π: C → I (i.e. diam π⁻¹(x) < ε for every x ∈ I).
- eircle-like, tree-like, graph-like are defined analogously.
- Ocontinuum C is indecomposable if is not the union of two proper subcontinua.
- hereditarily indecomposable if all nondegenerate subcontinua are indecomposable.
- arc-like hereditarily indecomposable continuum is topologically unique
 we call it the pseudoarc (Knaster; Moise; Bing).

< □ > < □ > < □ > < □ > < □ > < □ >

• (1951) R.H. Bing: pseudo-circle, a hereditarily indecomposable circle-like continuum that separates the plane into exactly two components. (uniqueness! Fearnley&Rogers)

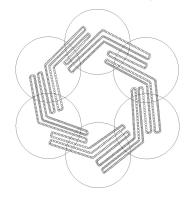


Figure: Construction by crooked circular chain (picture by Charatonik&Prajs&Pyrih)

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 4 / 35

★ ∃ ▶ ★

We call an arc A ε-crooked if for any pair of points p and q in A there exist points r and s between p and q such that r is between p and s, |p − s| < ε, and |r − q| < ε.

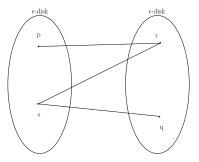
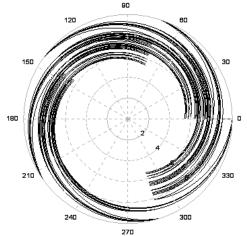


Figure: ϵ -crooked arc from p to q

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 5 / 35



UPV, 2017 6 / 35

・ロト ・御ト ・ヨト ・ヨト



UPV, 2017 7 / 35

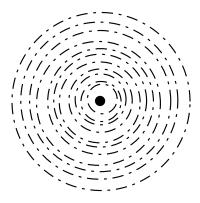
・ロト・(部・・ヨト・ヨー・)への

- (1960) Fearnley & Rogers: pseudo-circle is not homogeneous
- (1986) Kennedy & Rogers: pseudo-circle is uncountably nonhomogeneous
- (2011) Sturm: pseudo-circle is not continuously homogeneous

・ 同 ト ・ ヨ ト ・ ヨ

- (1991) Heath: pseudo-circle n-fold covers itself
- (1991) Bellamy & Lewis: the two-point compactification of the universal cover of the pseudo-circle is the pseudo-arc

M. Brown (1958): There exists a continuous decomposition of $\mathbb{R}^2\setminus\{(0,0)\}$ into pseudo-circles.



Continua and entropy

UPV, 2017 10 / 35

- (1982) Handel: pseudo-circle as an attracting minimal set of a C^∞ -smooth diffeomorphism of the plane
- (1996) Kennedy&Yorke: constructed a C^{∞} diffeomorphism on a 7-manifold which has an invariant set with an uncontable number of pseudocircle components and is stable to C^1 perturbations
- (2010) Chéritat: pseudo-circle as a boundary of a Siegel disk of a holomorphic map

Inverse limits

• in general, inverse limit - $\lim_{i \to \infty} \{ \{f_i\}_{i=0}^{\infty}, X \} = \{ (x_0, x_1, \ldots) : x_i \in X, f_i(x_{i+1}) = x_i \}$

We are interested in cases when there is one bonding map:

$$\mathbb{X} = \varprojlim \{f, X\} = \{(x_0, x_1, \ldots) : x_i \in X, f(x_{i+1}) = x_i\}$$

Solution shift homeo. - $\sigma_f(x_0, x_1, ...) = (f(x_0), x_0, x_1, ...)$

- f and σ_f share many dynamical properties, e.g.
 - dense periodic points
 - admissible periods of periodic points

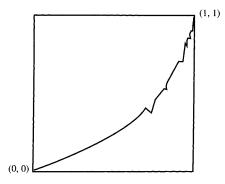
•
$$h_{top}(f) = h_{top}(\sigma_f)$$

•

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Pseudoarc

- **(**) If $f \in C(I)$ has some special properties, then X is a pseudoarc.
- **2** Then we can study dynamical properties of the homeomorphism σ_f in terms of f.
- Sexample of G. Henderson (Duke Math. J., 1964):



Piotr Oprocha (AGH)

Theorem (Kawamura, Tuncali & Tymchatyn)

Let G be a topological graph and $f: G \to G$ a piecewise linear surjection which satisfies the following condition (topological exactness):

• for each open subset U of G, there is a positive integer n such that $f^n(U) = G$.

Then for each $\varepsilon > 0$ there is a map $f_{\varepsilon} \colon G \to G$ which is ε -close to f such that (G, f_{ε}) is hereditarily indecomposable.

Theorem (Kościelniak & O. & Tuncali)

Let G be a topological graph and let \mathcal{K} be a triangulation of G. For every topologically exact map $f: G \to G$ and every $\varepsilon > 0$ there is a topologically mixing map $f_{\varepsilon}: G \to G$ with the shadowing property, which is ε -close to f such that (G, f_{ε}) is hereditarily indecomposable and $f(x) = f_{\varepsilon}(x)$ for every vertex in \mathcal{K} .

Theorem (Barge & Martin)

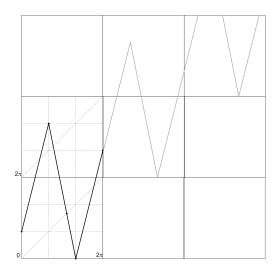
Every continuum $\mathbb{X} = \varprojlim \{f, [0, 1]\}$, can be embedded into a disk D in such a way that

- (i) \mathbb{X} is an attractor of a homeomorphism $h: D \to D$,
- (ii) $h|_{\mathbb{X}} = \sigma_f$; i.e. *h* restricted to \mathbb{X} agrees with the shift homeomorphism induced by *f*, and
- (iii) h is the identity on the boundary of D.

Remark

It was pointed by Barge & Roe that the same is true if f is a degree ± 1 circle map and h is an annulus homeomorphism.

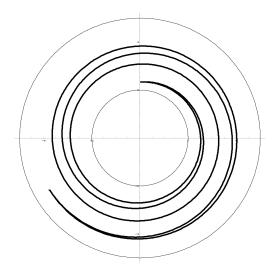
イロト イポト イヨト イヨト 二日



Piotr Oprocha (AGH)

UPV, 2017 16 / 35

Embedding



Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 17 / 35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem (Barge&Gillette, 1991)

Suppose $h: A \to A$ is an orientation preserving annulus homeomorphism with an invariant cofrontier C. If the rotation number of $h|_C$ is not unique then C is indecomposable, the set of rotation numbers contains an interval, and each rational rotation number is realized by a periodic orbit.

Theorem (Boroński & O., 2015)

There exists a 2-torus homeomorphism h homotopic to identity such that:

- a pseudocircle C is a strange attractor for h (i.e. set of rotation numbers on C contains an interval),
- $T|_C$ is topologically mixing and has positive entropy,
- the set of rotation numbers of $T|_C$ is an interval.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An old question

Question 1 (Barge, 1989?)

Is every real number the entropy of some homeomorphism on the pseudo-arc?

Theorem (Mouron, 2012)

If $f \in C(I)$ is such that the inverse limit X is the pseudoarc then $h_{top}(f) \in \{0, \infty\}$.

- The answer to Barge's question is still unknown.
- With Example of Henderson + Minc and Transue technique we see that both cases 0, ∞ can be obtained in practice.

イロト イポト イヨト イヨト

• We proved the following (with other methodology than Mouron).

Theorem (Boroński & O.)

If $f \in C(G)$ is such that the inverse limit X is the hereditarily indecomposable then:

 $1 h_{top}(f) \in \{0,\infty\},$

• it is known that there is a homeomorphism of the pseudo-circle with zero entropy - example of M. Handel.

< □ > < □ > < □ > < □ > < □ > < □ >

On the circle

Theorem (Boroński & O.)

If $\mathbb{X} = \varprojlim(\mathbb{S}^1, f)$ is hereditarily indecomposable, and \mathbb{X} is not the pseudo-arc (i.e. deg $f \neq 0$) then $h_{top}(f) = \infty$

- Main ingredient is characterization of Auslander and Katznelson of periodic-point-free circle homeomorphisms,
- We believe that $h_{top}(f) = \infty$ when G has no endpoints, but have no proof so far...

Corollary

Suppose $f : \mathbb{S}^1 \to \mathbb{S}^1$ is a map with deg(f) = 1. If $\Lambda_f = \varprojlim(\mathbb{S}^1, f)$ is hereditarily indecomposable then the rotation set $\rho(f)$ (after embedding by BBM) is nondegenerate.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

On the circle

Theorem (Boroński & O.)

If $\mathbb{X} = \varprojlim(\mathbb{S}^1, f)$ is hereditarily indecomposable, and \mathbb{X} is not the pseudo-arc (i.e. deg $f \neq 0$) then $h_{top}(f) = \infty$

- Main ingredient is characterization of Auslander and Katznelson of periodic-point-free circle homeomorphisms,
- We believe that $h_{top}(f) = \infty$ when G has no endpoints, but have no proof so far...

Corollary

Suppose $f : \mathbb{S}^1 \to \mathbb{S}^1$ is a map with deg(f) = 1. If $\Lambda_f = \varprojlim(\mathbb{S}^1, f)$ is hereditarily indecomposable then the rotation set $\rho(f)$ (after embedding by BBM) is nondegenerate.

Piotr Oprocha (AGH)

। • • ≣ • ≣ • ੭ ৭ ৫ UPV, 2017 21 / 35

イロト イポト イヨト イヨト

M. Handel - Anosov-Katok type construction

• (1982) M. Handel: pseudo-circle as minimal set and attractor

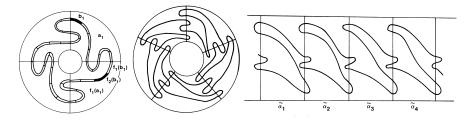


Figure: by M. Handel

Continua and entropy

UPV, 2017 22 / 35

Theorem (Handel, 1982)

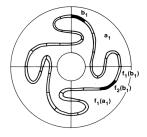
There exists a C^{∞} -smooth diffeomorphism of the plane F with pseudo-circle as an attracting minimal set. In addition, F has a well defined irrational rotation number but is not semi-conjugate to a circle rotation (Thurston?).

Question 2 (Auslander, AIMS Madrid 2014)

Does Handel's homeomorphism has any proximal pairs?

• A pair of points x, y is proximal for h if $\liminf_{n\to\infty} d(h^n(x), h^n(y)) = 0.$

Dynamical properties of Handel's construction



• Handel's example is (implicitly contained in Handel's paper)

- minimal
- uniformly rigid

Observation (Boroński, Clark, O.)

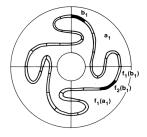
Handel's example is weakly mixing (in particular, proximal pairs form a residual set).

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 24 / 35

Dynamical properties of Handel's construction



In the second second

- minimal
- uniformly rigid

Observation (Boroński, Clark, O.)

Handel's example is weakly mixing (in particular, proximal pairs form a residual set).

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 24 / 35

Uniformly rigid, minimal & weak mixing

- Examples of minimal, weakly mixing and uniformly rigid systems were first constructed in dimension 2 or higher by Glassner and Maon in 1989.
- **2** These examples include \mathbb{T}^n for every $n \geq 2$.
- Dynamical properties can be slightly extended beyond topological weak mining (e.g. weakly mixing measure)
- or on other surfaces (e.g. Klein bottle; example by K. Yancey)
- Up to our knowledge, this is the only second class of such examples, and the first in dimension 1.

Hereditarily indecomposable continua and entropy

Recall:

Question 1 (Barge, 1989)

Is every real number the entropy of some homeomorphism on the pseudo-arc?

Question 3 (Mouron 2009)

Does there exist a homeomorphism of a hereditarily indecomposable continuum with topological entropy other than 0 or $\infty?$

- 4 同 1 - 4 三 1 - 4 三

Theorem (Boronski & Clark & O.)

There exist hereditarily indecomposable continua X satisfying:

- there is α ∈ (0, 1) and a homeomorphism T_α : X → X with h_{top}(T_α) = α (in fact there are infinitely many such α)
- 2 X occurs as an invariant minimal set with intermediate complexity within an attractor of a smooth diffeomorphism F of a 4 dimensional manifold, and
- **3** the restriction F|X is weakly mixing.

< □ > < □ > < □ > < □ > < □ > < □ >

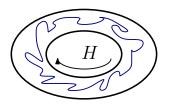
Theorem (Boronski & Clark & O.)

Assume that H is a HAK homeomorphism (e.g. the one from Handel's construction) with a nonzero rotation number α on pseudo-circle Ψ . Then $h_{top}(H_C) = |\alpha|h_{top}(h)$.

- ${\it H}_{C}$ "lives" in the quotient space $([0,1]\times \mathbb{R})\times {\it C}/\approx,$ where:
 - $h: C \to C$ is a minimal homeomorphism,
 - $((s, r), c) \approx ((s', r'), c')$ if and only if
 - s = s' and there is an $n \in \mathbb{Z}$ satisfying r' = r + n and $c' = h^{-n}(c)$,

(日) (周) (日) (日) (日) (0) (0)

manana

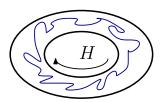


Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 29 / 35

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで



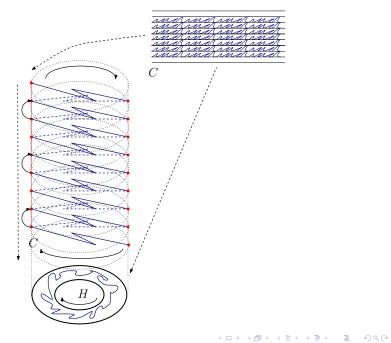
Piotr Oprocha (AGH)

C

Continua and entropy

UPV, 2017 30 / 35

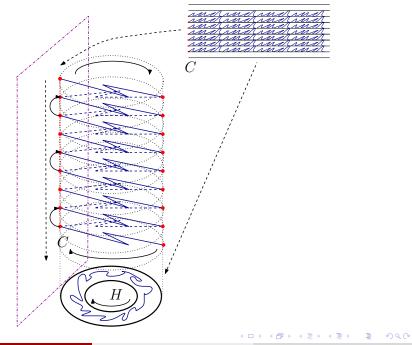
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 31 / 35



UPV, 2017 32 / 35

Some further questions

Question 4a

Does for every $\alpha \in \mathbb{R}$ there exist a pseudo-circle homeomorphism with a well defined rotation number α ?

Question 4b

Is there a hereditarily indecomposable continuum X such that for every $t \ge 0$ there is a homomorphism $F_t: X \to X$ of entropy $h_{top}(F_t) = t$?

Note: See a series of papers by John Mayer, and a paper by Mark Turpin.

Question 5

Is there an indecomposable cofrontier that admits a minimal homeomorphism semi-conjugated to an irrational circle rotation?

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 33 / 35

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Boroński & Clark & O.)

Let $\Psi \subset \mathbb{A}$ be an essential pseudo-circle attracting all the points from int \mathbb{A} and assume that $H \colon \mathbb{A} \to \mathbb{A}$ is a homemomorphism with a nondegenerate rotation set. Then $h_{top}(H|_{\Psi}) = h_{top}(H) = +\infty$.

Question 5

Let $\Psi \subset \mathbb{A}$ be an essential pseudo-circle and assume that $H \colon \mathbb{A} \to \mathbb{A}$ is a homemomorphism with a nondegenerate rotation set. Is it true that $h_{\text{top}}(H|_{\Psi}) = +\infty$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Thank you for your attention.

J. Boroński, A. Clark, P. Oprocha New exotic minimal sets from pseudo-suspensions of Cantor systems Preprint at arXiv:1609.09121.

Piotr Oprocha (AGH)

Continua and entropy

UPV, 2017 35 / 35

→ < ∃ >