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Indecomposable arc-like continua

1 continuum C is arc-like if for every ε > 0 there is an ε-map π : C → I
(i.e. diamπ−1(x) < ε for every x ∈ I ).

2 circle-like, tree-like, graph-like are defined analogously.

3 continuum C is indecomposable if is not the union of two proper
subcontinua.

4 hereditarily indecomposable if all nondegenerate subcontinua are
indecomposable.

5 arc-like hereditarily indecomposable continuum is topologically unique
- we call it the pseudoarc (Knaster; Moise; Bing).
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(1951) R.H. Bing: pseudo-circle, a hereditarily indecomposable
circle-like continuum that separates the plane into exactly two
components. (uniqueness! Fearnley&Rogers)

Figure: Construction by crooked circular chain (picture by
Charatonik&Prajs&Pyrih)
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We call an arc A ε-crooked if for any pair of points p and q in A there
exist points r and s between p and q such that r is between p and s,
|p − s| < ε, and |r − q| < ε.
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r

ε-disk ε-disk

Figure: ε-crooked arc from p to q
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(1960) Fearnley & Rogers: pseudo-circle is not homogeneous
(1986) Kennedy & Rogers: pseudo-circle is uncountably
nonhomogeneous
(2011) Sturm: pseudo-circle is not continuously homogeneous
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(1991) Heath: pseudo-circle n-fold covers itself
(1991) Bellamy & Lewis: the two-point compactification of the
universal cover of the pseudo-circle is the pseudo-arc
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M. Brown (1958): There exists a continuous decomposition of
R2 \ {(0, 0)} into pseudo-circles.
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(1982) Handel: pseudo-circle as an attracting minimal set of a
C∞-smooth diffeomorphism of the plane
(1996) Kennedy&Yorke: constructed a C∞ diffeomorphism on a
7-manifold which has an invariant set with an uncontable number of
pseudocircle components and is stable to C 1 perturbations
(2010) Chéritat: pseudo-circle as a boundary of a Siegel disk of a
holomorphic map
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Inverse limits

1 in general, inverse limit -
lim←−{{fi}

∞
i=0,X} = {(x0, x1, . . .) : xi ∈ X , fi (xi+1) = xi}

2 we are interested in cases when there is one bonding map:

X = lim←−{f ,X} = {(x0, x1, . . .) : xi ∈ X , f (xi+1) = xi}
3 shift homeo. - σf (x0, x1, . . .) = (f (x0), x0, x1, . . .)

4 f and σf share many dynamical properties, e.g.
dense periodic points
admissible periods of periodic points
htop(f ) = htop(σf )
.....
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Pseudoarc

1 If f ∈ C (I ) has some special properties, then X is a pseudoarc.
2 Then we can study dynamical properties of the homeomorphism σf in

terms of f .
3 Example of G. Henderson (Duke Math. J., 1964):
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Method of Minc and Transue

Theorem (Kawamura, Tuncali & Tymchatyn)
Let G be a topological graph and f : G → G a piecewise linear surjection
which satisfies the following condition (topological exactness):

for each open subset U of G , there is a positive integer n such that
f n(U) = G .

Then for each ε > 0 there is a map fε : G → G which is ε-close to f such
that (G , fε) is hereditarily indecomposable.

Theorem (Kościelniak & O. & Tuncali)
Let G be a topological graph and let K be a triangulation of G . For every
topologically exact map f : G → G and every ε > 0 there is a topologically
mixing map fε : G → G with the shadowing property, which is ε-close to f
such that (G , fε) is hereditarily indecomposable and f (x) = fε(x) for every
vertex in K.
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Inverse limits and attractors

Theorem (Barge & Martin)
Every continuum X = lim←−{f , [0, 1]}, can be embedded into a disk D in
such a way that
(i) X is an attractor of a homeomorphism h : D → D,
(ii) h|X = σf ; i.e. h restricted to X agrees with the shift homeomorphism

induced by f , and
(iii) h is the identity on the boundary of D.

Remark
It was pointed by Barge & Roe that the same is true if f is a degree ±1
circle map and h is an annulus homeomorphism.
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Degree one map
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Embedding
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Pseudo-circle as strange attractor

Theorem (Barge&Gillette, 1991)
Suppose h : A→ A is an orientation preserving annulus homeomorphism
with an invariant cofrontier C . If the rotation number of h|C is not unique
then C is indecomposable, the set of rotation numbers contains an interval,
and each rational rotation number is realized by a periodic orbit.

Theorem (Boroński & O., 2015)
There exists a 2-torus homeomorphism h homotopic to identity such that:

a pseudocircle C is a strange attractor for h (i.e. set of rotation
numbers on C contains an interval),
T |C is topologically mixing and has positive entropy,
the set of rotation numbers of T |C is an interval.
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An old question

Question 1 (Barge, 1989?)
Is every real number the entropy of some homeomorphism on the
pseudo-arc?

Theorem (Mouron, 2012)
If f ∈ C (I ) is such that the inverse limit X is the pseudoarc then
htop(f ) ∈ {0,∞}.

The answer to Barge’s question is still unknown.
With Example of Henderson + Minc and Transue technique we see
that both cases 0, ∞ can be obtained in practice.
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A related result

We proved the following (with other methodology than Mouron).

Theorem (Boroński & O.)
If f ∈ C (G ) is such that the inverse limit X is the hereditarily
indecomposable then:

1 htop(f ) ∈ {0,∞},

it is known that there is a homeomorphism of the pseudo-circle with
zero entropy - example of M. Handel.
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On the circle

Theorem (Boroński & O.)

If X = lim←−(S1, f ) is hereditarily indecomposable, and X is not the
pseudo-arc (i.e. deg f 6= 0) then htop(f ) =∞

Main ingredient is characterization of Auslander and Katznelson of
periodic-point-free circle homeomorphisms,
We believe that htop(f ) =∞ when G has no endpoints, but have no
proof so far...

Corollary
Suppose f : S1 → S1 is a map with deg(f ) = 1. If Λf = lim←−(S1, f ) is
hereditarily indecomposable then the rotation set ρ(f ) (after embedding by
BBM) is nondegenerate.
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M. Handel - Anosov-Katok type construction

(1982) M. Handel: pseudo-circle as minimal set and attractor
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bly ... , bp2, and invariantly with respect to f2; thicken C3 to A3 and let f3IA3 be 
f2 followed by a slight rotation of A3 in its own annular structure, not that of A2; 
partition A3 with respect to f3. 

Iterate this to construct fn, A,, and en with the following additional properties: 
(1) fn: R2 -* R2 is an area preserving COO diffeomorphism which is en-close to 

fn-1 in the C" topology. 
(2) An is partitioned into pn elements of diameter less than en. These elements 

are transitively permuted by f, 
(3) The en's are so small that f = lim,,oo f,n is a C? area preserving diffeomor- 

phism and Ifi(x) - fi(x)I < en for 0 < i < Pn and all x E A,, 
Conditions (2) and (3) guarantee that f acts minimally on P nn=fl1 An which, 

by [F], is the pseudocircle. 
It remains to verify the two additional features of f mentioned in the introduc- 

tion. It is easy to construct a CO diffeomorphism h: S'1 X [0, 1) --+ Al -P such that 
each h(S' X {t}) is invariant by f. Perturbing f slightly in this induced structure 
we easily construct a C?? diffeomorphism f': R2 -+ R2 with P as an attracting 
minimal set. 

Showing that fIP is not semiconjugate to a homeomorphism of S' is more 
involved and we will only outline the argument. Suppose then that there exists 
a homeomorphism g: S' -+ SB and an onto map Hl: P -+ SI such that 

f 
P P 

commutes. 
Let -yn: A, -- S' be the projection of the annulus to its core circle and let 

-n: A71 -+ R be the lift of Ayn to the corresponding universal covers. The inclusions 
A+, C An are homotopy equivalences, so An+, C An and P = nnolo An, is an 
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the invariant set to be a Jordan curve. To my knowledge, ours is the first such ex- 
ample where the area preserving diffeomorphism f acts transitively on the invariant 
set P but P is not a Jordan curve. 

I would like to thank W. Thurston for pointing out that f is not semiconjugate 
to a homeomorphism of S', and J. Mather for several interesting conversations. 

The construction. Begin with C1, the unit circle in R2, and el > 0. Divide C1 
into P1 equal pieces D1, .. ., DP,, each of diameter less than el, and thicken radially 
to A1 -D1 X [-1, 1] so that each ai = Di X [-1, 1] still has diameter less than el. 
Define fi: R2 -+ R2 so that fiIC, X [-1, 1] = Rc,e1 X identity where a,1 1/p 
and Ro, is rotation through the angle a. 

P1-=4 C2C A1 P1-5 
FIGURE 1 

a1 a2 63 a4 

C2CA1 P1 =5 
FIGURE 2 

Embed a circle C2 in Al which is crooked with respect to a1, ... , ap1 and invariant 
with respect to f,. A more general definition of crookedness is given in [Bi] but 
for our purposes, the following suffices. The inclusion C2 -+ Al is a homotopy 
equivalence. Consider the universal covers C2 C A1. The division of A, into ai, 
i = 1, ... , P, lifts to a division of Al into ii, i = -oo, . . . , oo. C2 is crookedly 
embedded in Al with respect to a,,.. ., ap1 if any segment a of C2 running from 
&i to &j (Pi > j - i > 2) can be written as a composition a = O1 * 0a2 * a3 where 
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Figure: by M. Handel
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Theorem (Handel, 1982)
There exists a C∞-smooth diffeomorphism of the plane F with
pseudo-circle as an attracting minimal set. In addition, F has a well defined
irrational rotation number but is not semi-conjugate to a circle rotation
(Thurston?).

Question 2 (Auslander, AIMS Madrid 2014)
Does Handel’s homeomorphism has any proximal pairs?

A pair of points x , y is proximal for h if
lim infn→∞ d(hn(x), hn(y)) = 0.
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Dynamical properties of Handel’s construction

1 Handel’s example is (implicitly contained in Handel’s paper)
minimal
uniformly rigid

Observation (Boroński, Clark, O.)
Handel’s example is weakly mixing (in particular, proximal pairs form a
residual set).
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Uniformly rigid, minimal & weak mixing

1 Examples of minimal, weakly mixing and uniformly rigid systems were
first constructed in dimension 2 or higher by Glassner and Maon in
1989.

2 These examples include Tn for every n ≥ 2.
3 Dynamical properties can be slightly extended beyond topological

weak mining (e.g. weakly mixing measure)
4 or on other surfaces (e.g. Klein bottle; example by K. Yancey)

5 Up to our knowledge, this is the only second class of such examples,
and the first in dimension 1.
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Hereditarily indecomposable continua and entropy

Recall:

Question 1 (Barge, 1989)
Is every real number the entropy of some homeomorphism on the
pseudo-arc?

Question 3 (Mouron 2009)
Does there exist a homeomorphism of a hereditarily indecomposable
continuum with topological entropy other than 0 or ∞?
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A solution...

Theorem (Boronski & Clark & O.)
There exist hereditarily indecomposable continua X satisfying:

1 there is α ∈ (0, 1) and a homeomorphism Tα : X → X with
htop(Tα) = α (in fact there are infinitely many such α)

2 X occurs as an invariant minimal set with intermediate complexity
within an attractor of a smooth diffeomorphism F of a 4 dimensional
manifold, and

3 the restriction F |X is weakly mixing.
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A brief look on formal methodology...

Theorem (Boronski & Clark & O.)
Assume that H is a HAK homeomorphism (e.g. the one from Handel’s
construction) with a nonzero rotation number α on pseudo-circle Ψ. Then
htop(HC ) = |α|htop(h).

HC “lives” in the quotient space ([0, 1]× R)× C/ ≈, where:
h : C → C is a minimal homeomorphism,
((s, r), c) ≈ ((s ′, r ′), c ′)
if and only if
s = s ′ and there is an n ∈ Z satisfying r ′ = r + n and c ′ = h−n(c),
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Some further questions

Question 4a
Does for every α ∈ R there exist a pseudo-circle homeomorphism with a
well defined rotation number α?

Question 4b
Is there a hereditarily indecomposable continuum X such that for every
t ≥ 0 there is a homomorphism Ft : X → X of entropy htop(Ft) = t?

Note: See a series of papers by John Mayer, and a paper by Mark Turpin.

Question 5
Is there an indecomposable cofrontier that admits a minimal
homeomorphism semi-conjugated to an irrational circle rotation?

Piotr Oprocha (AGH) Continua and entropy UPV, 2017 33 / 35



Theorem (Boroński & Clark & O.)

Let Ψ ⊂ A be an essential pseudo-circle attracting all the points from intA
and assume that H : A→ A is a homemomorphism with a nondegenerate
rotation set. Then htop(H|Ψ) = htop(H) = +∞.

Question 5
Let Ψ ⊂ A be an essential pseudo-circle and assume that H : A→ A is a
homemomorphism with a nondegenerate rotation set. Is it true that
htop(H|Ψ) = +∞.

Piotr Oprocha (AGH) Continua and entropy UPV, 2017 34 / 35



That’s all...

Thank you for your attention.

J. Boroński, A. Clark, P. Oprocha
New exotic minimal sets from pseudo-suspensions of Cantor systems

Preprint at arXiv:1609.09121.
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