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Ergodic theory

Let (X ,B, µ) be a probability space and let
T : (X ,B, µ)→ (X ,B, µ) be a measurable map.

Definition

(a) T is called a measure-preserving transformation if
µ(T−1(A)) = µ(A) for all A ∈ B.

(b) T is called ergodic if it is measure-preserving and satisfies one
of the following equivalent conditions:

(i) Given any measurable sets A,B with positive measures, one
can find an integer n ≥ 0 such that T n(A) ∩ B 6= ∅;

(ii) if A ∈ B satisfies T (A) ⊂ A, then µ(A) = 0 or 1.
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Example - Irrational rotations

Let X = T, let B be the Borel σ-algebra on T and let µ be the
Lebesgue measure on T. Let θ ∈ R\Q. Then

T : (X ,B, µ) → (X ,B, µ)

z 7→ e i2πθz

is ergodic.
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Example - Dyadic transformation

Let X = [0, 1), let B be the Borel σ-algebra on X and let µ be the
Lebesgue measure on X . Then

T : (X ,B, µ) → (X ,B, µ)

x 7→ 2x mod 1

is ergodic.
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Example - Bernoulli shift

Let X = {−1, 1}Z, let B be the σ-algebra generated by cylinder
sets:

{x ∈ X ; (xn, . . . , xp) ∈ En × · · · × Ep}, Ej ⊂ {−1, 1}.

µk is defined by µk({1}) = 1/2 and µk({−1}) = 1/2. Let
µ = · · · ⊗ µ−1 ⊗ µ0 ⊗ µ1 ⊗ . . . , namely

µ
(
{x ∈ X ; (xn, . . . , xp) ∈ En×· · ·×Ep}

)
= µn(En)×· · ·×µp(Ep).

Then

T : (X ,B, µ) → (X ,B, µ)

(xn) 7→ (xn+1)

is ergodic.
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Why?

Strategy: Let T ∈ L(X ). Suppose that we can construct a
measure µ defined on the Borel σ-algebra B of X , such that

• µ has full support (namely µ(U) > 0 for any non-empty open
set U ⊂ X );

• T is ergodic with respect to µ (namely µ(A)µ(B) 6= 0 implies
that there exists n ∈ N with T n(A) ∩ B 6= ∅.)

Then T is topologically transitive, hence hypercyclic.
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Birkhoff’s ergodic theorem

Theorem
Let (X ,B, µ) be a probability space and let
T : (X ,B, µ)→ (X ,B, µ) be a measure-preserving ergodic
transformation. For any f ∈ L1(X , µ),

1

N

N−1∑
n=0

f (T nx)
N→∞−−−−→

∫
X

fdµ µ-a.e.

Corollary

Let T ∈ L(X ). Assume that T is an ergodic transformation with
respect to a Borel probability measure µ on X with full support.
Then µ-almost every point x ∈ X has the following property: for
every non-empty open set V ⊂ X , one has

lim inf
N→∞

card {n ∈ [0,N); T n(x) ∈ V }
N

> 0 .
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Thus, if we can construct a probability measure µ defined on the
Borel σ-algebra B of X , such that

• µ has full support (namely µ(U) > 0 for any non-empty open
set U ⊂ X );

• T is ergodic with respect to µ.

Then µ-almost every point x ∈ X has the following property: for
every non-empty open set V ⊂ X , one has

lim inf
N→∞

card {n ∈ [0,N); T n(x) ∈ V }
N

> 0 . (1)

Hypercyclic operators satisfying the stronger condition (1) are
called frequently hypercyclic. Moreover, we get that the set of
(frequently) hypercyclic vectors is large in a probabilistic sense.
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Questions to solve

• What kind of measures shall we consider?

• Given T ∈ L(X ) and a measure µ on X , how to prove that T
is a measure-preserving transformation?

• Given T ∈ L(X ) and a measure µ on X , how to prove that T
is ergodic with respect to µ?

• What kind of conditions on T ∈ L(X ) ensures that we can
construct a measure µ on X such that the dynamical system
(T , µ) is ergodic?
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Real Gaussian variables

For any σ > 0, let us denote by γσ the centered Gaussian measure
on R with variance σ2; that is,

dγσ =
1

σ
√

2π
e−

t2

2σ2 dt .

X1 ∼ γσ1

X2 ∼ γσ2

X1 and X2 are independent

 =⇒ X1+X2 ∼ γσ with σ2 = σ2
1+σ2

2.

If (Xn) are independent random variables, Xn ∼ γσn and if∑
n σ

2
n < +∞, then

∑
n Xn ∼ γσ with σ2 =

∑
n σ

2
n.
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Complex Gaussian variables

Definition
A complex-valued random variable Z : Ω→ C defined on some
probability space (Ω,F ,P) is said to have complex symmetric
Gaussian distribution if either Z is almost surely 0, or the real
and imaginary parts of Z are independent and have centered
Gaussian distribution with the same variance.

Remark
Let Z be a complex random variable with complex Gaussian
distribution, E(|Z |2) = σ2, and write it Z = X + iY . Then
E(|X |2) = σ2/2 and E(|Y |2) = σ2/2. If E|Z |2 = 1, then Z is said
to be standard.

Remark
Suppose that Z has complex symmetric Gaussian distribution.
Then, for any λ ∈ C, λZ has complex symmetric Gaussian
distribution and E(|λZ |2) = |λ|2E(|Z |2).
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Gaussian measures

Definition
A Gaussian measure on X is a probability measure µ on X such
that each continuous linear functional x∗ ∈ X ∗ has symmetric
complex Gaussian distribution, when considered as a random
variable on (X ,B, µ).

Let (Ω,F ,P) be a probability space, and let (gn)n∈N be a sequence
of independent standard complex Gaussian variables defined on
(Ω,F ,P). Such a sequence (gn) will be called a standard
Gaussian sequence.

Definition
A Gaussian sum in X is a sum

∑
n gnxn where (xn) is a sequence

of vectors in X .
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Convergence of Gaussian sums

Proposition

Let (xn) ⊂ X . The following are equivalent :

(i) The Gaussian sum
∑

n gnxn converges almost surely.

(ii) The Gaussian sum
∑

n gnxn converges in Lp, for some
p ∈ [1,+∞);

(iii) The Gaussian sum
∑

n gnxn converges in Lp, for any
p ∈ [1,+∞);

(iv) The Gaussian sum
∑

n gnxn converges in probability.

If X is a Hilbert space, this is equivalent to
∑

n ‖xn‖2 < +∞.
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Distribution of a Gaussian sum

The distribution of the Gaussian sum
∑

n gnxn is defined by

µ(A) = P

({
ω ∈ Ω;

∑
n

gn(ω)xn ∈ A

})
.

Theorem
If the series

∑
n gnxn is almost surely convergent, then its

distribution is a Gaussian measure.
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Distribution of Gaussian sums are Gaussian measures

Theorem
If the series

∑
n gnxn is almost surely convergent, then its

distribution is a Gaussian measure.

Definition
A Gaussian measure on X is a probability measure µ on X such
that each continuous linear functional x∗ : (X ,B, µ)→ (C,B(C))
has symmetric complex Gaussian distribution.

• Step 1: the same result on R.
If (Xn) are independent random variables, Xn ∼ γσn and if∑

n σ
2
n < +∞, then

∑
n Xn ∼ γσ with σ2 =

∑
n σ

2
n.

• Step 2: the same result on C.

Lemma
Let (an) be a sequence of complex numbers such that∑

n |an|2 < +∞. Then
∑

n gnan has complex symmetric Gaussian
distribution.
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Distribution of Gaussian sums are Gaussian measures

Theorem
If the series

∑
n gnxn is almost surely convergent, then its

distribution is a Gaussian measure.

Proof.
Let x∗ : (X ,B, µ)→ (C,B(C)) and let A ∈ B(C). Does x∗ has
symmetric complex Gaussian distribution?

µ(x∗−1(A)) = P

({
ω ∈ Ω;

〈
x∗,
∑
n

gnxn

〉
∈ A

})

= P

({
ω ∈ Ω;

∑
n

gn〈x∗, xn〉 ∈ A

})

...

and by the lemma
∑

n gn〈x∗, xn〉 has complex symmetric
Gaussian distribution.
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The covariance operator

Gaussian variables on R are characterized by their mean and their
variance.

Gaussian vectors on Rd are characterized by their mean and their
covariance matrix.

Theorem
Let µ be a Gaussian measure on X .

(1) One can define a continuous, conjugate-linear operator
Rµ : X ∗ → X such that, for every (x∗, y∗) ∈ X ∗ × X ∗:

〈Rµ(x∗), y∗〉 =

∫
X
〈x∗, z〉 〈y∗, z〉 dµ(z) = 〈x∗, y∗〉L2(µ) .

The operator Rµ is called the covariance operator of µ.

(2) Two Gaussian measures on X coincide if and only if they have
the same covariance operator.
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Factorisation of the covariance operator

〈Rµ(x∗), y∗〉 =

∫
X
〈x∗, z〉 〈y∗, z〉 dµ(z) = 〈x∗, y∗〉L2(µ) .

• Rµ is symmetric: 〈Rµ(x∗), y∗〉 = 〈x∗,Rµ(y∗)〉;
• Rµ is positive: 〈Rµ(x∗), x∗〉 ≥ 0.

There exists some separable Hilbert space H and an operator
K : H → X such that

Rµ = KK ∗.
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Covariance operator and properties of µ

〈Rµ(x∗), y∗〉 =

∫
X
〈x∗, z〉 〈y∗, z〉 dµ(z) = 〈x∗, y∗〉L2(µ) .

It characterizes the Gaussian measure µ: one can see any property
of µ on it.

How to see on R (or on K ) that µ has full support?

Theorem
Let µ be a Gaussian measure and let R = KK ∗ be its covariance
operator. Then the following properties are equivalent :

(i) µ has full support;

(ii) R is one-to-one;

(iii) K has dense range.

The difficult implication: (iii) =⇒ (i).
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(iii) K has dense range.

The difficult implication: (iii) =⇒ (i).
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Covariance operator and properties of µ
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(ii) R is one-to-one;

(iii) K has dense range.

The difficult implication: (iii) =⇒ (i).
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Gaussian measures with full support

K has dense range =⇒ µ has full support.

Step 1 The support of a Gaussian sum.

Let
∑

n gnxn be an almost surely convergent Gaussian
sum and let ν be its distribution. Let O ⊂ X be open
such that O ∩ span(xn) 6= ∅. Then ν(O) > 0.

The support of the distribution of a Gaussian sum∑
n gnxn is the closure of span(xn).
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Gaussian measures with full support
Step 2 The covariance operator of a Gaussian sum.

Let
∑

n gnxn be an almost surely convergent
Gaussian sum and let ν be its distribution. Then the
covariance operator of ν is given by

Rν(x∗) =
∑
n

〈x∗, xn〉 xn.

〈Rν(x∗), y∗〉 =

∫
X
〈x∗, x〉〈y∗, x〉dν(x)

=

∫
Ω

〈
x∗,
∑
n

gn(ω)xn

〉〈
y∗,
∑
n

gn(ω)xn

〉
dP(ω)

=
∑
n,m

〈x∗, xn〉〈y∗, xm〉
∫

Ω
gn(ω)gm(ω)dP(ω)

=
∑
n

〈x∗, xn〉〈y∗, xn〉
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Gaussian measures with full support

Step 3 Any Gaussian measure is the distribution of a
Gaussian sum

Let R = KK ∗ be the covariance operator of some
Gaussian measure µ. Then, for any orthonormal basis
(en) of H,

Rx∗ =
∑
n

〈x∗,Ken〉Ken.

R(x∗) = K

( ∞∑
n=0

〈en,K ∗(x∗)〉H en

)

=
∞∑
n=0

〈x∗,K (en)〉K (en) ,
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Gaussian measures with full support
K has dense range =⇒ µ has full support.

Step 1 Let
∑

n gnxn be an almost surely convergent Gaussian
sum and let ν be its distribution. Let O ⊂ X be open
such that O ∩ span(xn) 6= ∅. Then ν(O) > 0.

Step 2 Let
∑

n gnxn be an almost surely convergent
Gaussian sum and let ν be its distribution. Then the
covariance operator of ν is given by

Rν(x∗) =
∑
n

〈x∗, xn〉 xn.

Step 3 Let R = KK ∗ be the covariance operator of some
Gaussian measure µ. Then, for any orthonormal basis
(en) of H,

Rx∗ =
∑
n

〈x∗,Ken〉Ken.
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Questions to solve

• What kind of measures shall we consider?

• Given T ∈ L(X ) and a measure µ on X , how to prove that T
is a measure-preserving transformation?

• Given T ∈ L(X ) and a measure µ on X , how to prove that T
is ergodic with respect to µ?

• What kind of conditions on T ∈ L(X ) ensures that we can
construct a measure µ on X such that the dynamical system
(T , µ) is ergodic?
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Measure-preserving transformations

Proposition

Let µ be a Gaussian measure on X with covariance operator R and
let T ∈ L(X ). Then the image measure µT = µ ◦ T−1 is a
Gaussian measure on X , with covariance operator TRT ∗. In
particular, T is measure-preserving if and only if TRT ∗ = R.

〈RT (x∗), y∗〉 =

∫
Y
〈x∗, z〉〈y∗, z〉 dµT (z)

=

∫
X
〈x∗,T (z)〉〈y∗,T (z)〉 dµ(z)

= 〈RT ∗x∗,T ∗y∗〉
= 〈TRT ∗(x∗), y∗〉.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

Measure-preserving transformations

Proposition

Let µ be a Gaussian measure on X with covariance operator R and
let T ∈ L(X ). Then the image measure µT = µ ◦ T−1 is a
Gaussian measure on X , with covariance operator TRT ∗. In
particular, T is measure-preserving if and only if TRT ∗ = R.

〈RT (x∗), y∗〉 =

∫
Y
〈x∗, z〉〈y∗, z〉 dµT (z)

=

∫
X
〈x∗,T (z)〉〈y∗,T (z)〉 dµ(z)

= 〈RT ∗x∗,T ∗y∗〉
= 〈TRT ∗(x∗), y∗〉.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

What about ergodicity?
T : (X ,B, µ)→ (X ,B, µ) is ergodic provided

∀(A,B) ∈ B, µ(A)µ(B) 6= 0 =⇒ ∃n ∈ N, T n(A) ∩ B 6= ∅.

Birkhoff’s theorem says that for an ergodic transformation T ,

1

N

N−1∑
n=0

f (T nx)
N→∞−−−−→

∫
X

fdµ µ-a.e.

Thus, T : (X ,B, µ)→ (X ,B, µ) is ergodic

⇐⇒ ∀f , g ∈ L2(X , µ),
1

N

N−1∑
n=0

∫
X

f (T nx)g(x)dµ
N→∞−−−−→

∫
X

fdµ

∫
X

gdµ,

⇐⇒ ∀A,B ∈ B, lim
N→∞

1

N

N−1∑
n=0

µ(T nA ∩ B) = µ(A)µ(B).
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Weakly mixing - Strongly mixing

T : (X ,B, µ)→ (X ,B, µ) is weakly mixing

⇐⇒ lim
N→∞

1

N

N−1∑
n=0

|µ(A ∩ T−n(B))− µ(A)µ(B)| = 0 (A,B ∈ B)

⇐⇒ lim
N→∞

1

N

N−1∑
n=0

∣∣∣∣∫
X

f (T nz)g(z) dµ(z)−
∫
X

fdµ

∫
X

gdµ

∣∣∣∣ = 0.

T : (X ,B, µ)→ (X ,B, µ) is strongly mixing

⇐⇒ lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B) (A,B ∈ B)

⇐⇒ lim
n→∞

∫
X

f (T nz)g(z) dµ(z) =

∫
X

f dµ

∫
X

g dµ
(
f , g ∈ L2(X , µ)

)
.
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The characterization of mixing properties

Theorem (Rudnicki, 1993)

Let µ be a Gaussian measure on X with full support and
covariance operator R. Let T ∈ L(X ) be measure-preserving. The
following are equivalent:

(i) T is weakly mixing (strongly mixing, respectively) with
respect to µ;

(ii) For all x∗, y∗ ∈ X ∗,

lim
N→∞

1

N

N−1∑
n=0

|〈RT ∗n(x∗), y∗〉| = 0

( lim
n→∞

〈RT ∗n(x∗), y∗〉 = 0, respectively).
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The easy implication

(i) T is strongly mixing with respect to µ, namely

lim
n→∞

∫
X

f (T nz)g(z) dµ(z) =

∫
X

f dµ

∫
X

g dµ
(
f , g ∈ L2(X , µ)

)
.

(ii) For all x∗, y∗ ∈ X ∗, lim
n→∞

〈RT ∗n(x∗), y∗〉 = 0.

〈R(x∗), y∗〉 =

∫
X
〈x∗, z〉 〈y∗, z〉 dµ(z).

〈RT ∗n(x∗), y∗〉 =

∫
X
〈x∗,T n(z)〉〈y∗, z〉 dµ(z).

〈RT ∗n(x∗), y∗〉 →
∫
X
〈x∗, z〉dµ(z)

∫
X
〈y∗, z〉dµ(z) = 0.
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The difficult implication - I

Assumption:

lim
n→∞

〈RT ∗n(x∗), y∗〉 = 0 (x∗, y∗) ∈ X ∗.

Conclusion:

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B) (A,B ∈ B). (2)

Definition
A ⊂ X is a cylinder set if there exist N ≥ 1, (x∗1 , . . . , x

∗
N) a family

of independent vectors of X ∗ and E ⊂ CN such that

A =
{

x ∈ X ;
(
〈x∗1 , x〉, . . . , 〈x∗N , x〉

)
∈ E

}
.

It suffices to testify (2) for A,B cylinder sets.
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The difficult implication - II

Definition
A ⊂ X is a cylinder set if there exist N ≥ 1, (x∗1 , . . . , x

∗
N) a family

of independent vectors of X ∗ and E ⊂ CN such that

A =
{

x ∈ X ;
(
〈x∗1 , x〉, . . . , 〈x∗N , x〉

)
∈ E

}
.

Cylinder sets are ”finite-dimensional sets”

=⇒ we need a
finite-dimensional lemma.

Lemma
Let (νn) be a sequence of Gaussian measures on some
finite-dimensional Banach space E = CN , and let ν be a Gaussian
measure on E with full support. Assume that Rνn → Rν as
n→∞. Then νn(Q)→ ν(Q) for every Borel set Q ⊂ E .
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The difficult implication - III
Assumption:

lim
n→∞

〈RT ∗n(x∗), y∗〉 = 0 (x∗, y∗) ∈ X ∗.

A =
{

x ∈ X ;
(
〈x∗1 , x〉, . . . , 〈x∗N , x〉

)
∈ E

}
B =

{
x ∈ X ;

(
〈y∗1 , x〉, . . . , 〈y∗M , x〉

)
∈ F

}
.

Aim :
lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

Tool :

Lemma
Let (νn) be a sequence of Gaussian measures on some
finite-dimensional Banach space E = CN , and let ν be a Gaussian
measure on E with full support. Assume that Rνn → Rν as
n→∞. Then νn(Q)→ ν(Q) for every Borel set Q ⊂ E .
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Summary

• We consider Gaussian measures µ on X ;

• They are characterized by their covariance operator R = KK ∗

〈R(x∗), y∗〉 =

∫
X
〈x∗, z〉 〈y∗, z〉 dµ(z);

• µ has full support if and only if K has dense range;

• T ∈ L(X ) is measure-preserving if and only if TRT ∗ = T ;

• T ∈ L(X ) is strongly-mixing if and only if

lim
n→∞

〈RT ∗n(x∗), y∗〉 = 0 (x∗, y∗) ∈ X ∗.
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• µ has full support if and only if K has dense range;

• T ∈ L(X ) is measure-preserving if and only if TRT ∗ = T ;

• T ∈ L(X ) is strongly-mixing if and only if

lim
n→∞

〈RT ∗n(x∗), y∗〉 = 0 (x∗, y∗) ∈ X ∗.
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Questions to solve

• What kind of measures shall we consider?

• Given T ∈ L(X ) and a measure µ on X , how to prove that T
is a measure-preserving transformation?

• Given T ∈ L(X ) and a measure µ on X , how to prove that T
is ergodic with respect to µ?

• What kind of conditions on T ∈ L(X ) ensures that we can
construct a measure µ on X such that the dynamical system
(T , µ) is ergodic?
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Having sufficiently many T-eigenvectors

Definition
A vector x ∈ X is a T-eigenvector for T if T (x) = λx for some
λ ∈ T.

Definition
A map E : T→ X is a perfectly spanning T-eigenvector field
provided

(i) E ∈ L∞(T,X );

(ii) ∀λ ∈ T, TE (λ) = λE (λ);

(iii) For any A ⊂ T with m(A) = 0, then span
(
E (λ); λ ∈ A

)
is

dense in A.
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The operator KE

Let T ∈ L(X ) with a perfectly spanning T-eigenvector field E .
Define

KE : L2(T, dm) → X

f 7→
∫
T

f (λ)E (λ)dm(λ)

and R = KEK ∗E . Then

1. KE has dense range;

2. TRT ∗ = T ;

3. For any x∗, y∗ ∈ X ∗, 〈RT ∗n(x∗), y∗〉 → 0.
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The intertwining equation

KE : L2(T, dm) → X

f 7→
∫
T

f (λ)E (λ)dm(λ)

V : L2(T, dm) → L2(T, dm)

f 7→ zf

TK = KV .

TKE (f ) =

∫
T

f (λ)TE (λ)dm(λ)

=

∫
T

f (λ)λE (λ)dm(λ)

= KVf .
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Comparison

Let T ∈ L(X ) with a perfectly spanning T-eigenvector field E , let
R = KEK ∗E and let µ be a Gaussian measure on X .

1. µ has full support if and only if Kµ has dense range;
Ok for KE !

2. T is measure-preserving if and only if TRµT ∗ = T ;
Ok for R!

3. T ∈ L(X ) is strongly-mixing with respect to µ if and only if

lim
n→∞

〈RµT ∗n(x∗), y∗〉 = 0 (x∗, y∗) ∈ X ∗.

Ok for R!

Is R the covariance operator of some Gaussian measure µ?
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Is R : X ∗ → X a covariance operator?

This is a difficult problem!

Definition
Let H be a separable Hilbert space. An operator K ∈ L(H,X ) is
said to be γ-radonifying if for some (equivalently, for any)
orthonormal basis (en) of H, the Gaussian series

∑
gn(ω)K (en)

converges almost surely.

Proposition

Let K ∈ L(H,X ) be γ-radonifying. Then R = KK ∗ is the
covariance operator of some Gaussian measure µ on X .

It suffices to take for µ the distribution of the Gaussian sum∑
n gnKen.
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On a Hilbert space

K ∈ L(H,X ) is γ-radonifying if for some orthonormal basis (en) of
H, the Gaussian series

∑
gn(ω)K (en) converges almost surely.

Fact. On a Hilbert space, a Gaussian sum
∑

n gnxn converges
almost surely if and only if

∑
n ‖xn‖2 < +∞.

On a Hilbert space, γ-radonifying operators and Hilbert-Schmidt
operators coincide!

KE : L2(T, dm) → X

f 7→
∫
T

f (λ)E (λ)dm(λ)

It is Hilbert-Schmidt!
R = KEK ∗E is the covariance operator of some Gaussian measure!
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Theorem on a Hilbert space

Theorem (B. Grivaux (2006))

Let X be a separable Hilbert space and let T ∈ L(X ) be such that
T has a perfectly spanning T-eigenvectorfield. Then there exists a
Gaussian measure µ on X with full support, with respect to which
T is a strongly-mixing measure-preserving transformation.
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What about Banach spaces?
K ∈ L(H,X ) is γ-radonifying if for some orthonormal basis (en) of
H, the Gaussian series

∑
gn(ω)K (en) converges almost surely.

Definition
A Banach space X is said to have (Gaussian) type p ∈ [1, 2] if∥∥∥∥∥∑

n

gnxn

∥∥∥∥∥
L2(Ω,X )

≤ C

(∑
n

||xn||p
) 1

p

,

for some finite constant C and every finite sequence (xn) ⊂ X .
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• A Hilbert space has type 2;

• Lp-spaces have type min(p, 2);

• Any Banach space has type 1;
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Corollary

Let X be a Banach space with type p and let K ∈ L(H,X ). Then
K is γ-radonifying as soon as

∑
n ‖Ken‖p < +∞ for some

orthonormal basis (en) of H.
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What about Banach spaces?

Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let T ∈ L(X ) be such that
T has a perfectly spanning T-eigenvector field E . Suppose
moreover that :

• X has type p;

• E is α-Hölderian for some α > 1
p −

1
2 .

Then there exists a Gaussian measure µ on X with full support,
with respect to which T is a strongly-mixing measure-preserving
transformation.

One has to find an orthonormal basis (en) of L2(T) such that∑
n ‖Ken‖p < +∞.

• (en) = (e int)n∈Z (B. Grivaux 2007). The result is less good.

• (en) = the Haar basis of L2(T).
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Banach spaces=Hilbert spaces!

Theorem (B. 2011)

Let X be a separable Banach space and let T ∈ L(X ) be such that
T has a perfectly spanning T-eigenvector field. Then there exists a
Gaussian measure µ on X with full support, with respect to which
T is a weakly-mixing measure-preserving transformation.

Strategy. Instead of considering

KE : L2(T, dm)→ X ,

consider
KE : L2(T, σ)→ X ,

with σ a continuous measure on T. σ will be carried on Cantor set!
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Cantor sets

Definition
A subset C of T is a Cantor set if it is the continuous image of
{−1, 1}N.

{−1, 1}N will be endowed with its Haar measure ν. ν is the tensor
product P1 ⊗ P2 ⊗ . . . , with, one each coordinate,

Pk({−1}) = 1/2 and Pk({1}) = 1/2.
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An orthonormal basis of L2({−1, 1}ω).

Any ω ∈ {−1, 1}N can be written

ω = (ε1(ω), ε2(ω), . . . ).

Definition
Let A ⊂ Pf (N). The Walsh function wA is defined by

wA(ω) =
∏
n∈A

εn(ω).

Theorem
(wA)A∈Pf (N) is an orthonormal basis of L2({−1, 1}N, ν).
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A new γ-radonifying operator

Lemma
Let φ : {−1, 1}N → C be an homeomorphism and let σ be the

image of the Haar measure ν on {−1, 1}N by φ. Let
u : {−1, 1}N → X be a continuous function such that, for any
n ≥ 1, for any (s1, . . . , sn−1) ∈ {−1, 1}n−1, any s ′, s ′′ ∈ {−1, 1}N,

‖u(s1, . . . , sn−1, 1, s
′)− u(s1, . . . , sn−1,−1, s ′′)‖ ≤ 3−n.

Let also E = u ◦ φ−1. Then there exists an orthonormal basis (en)
of L2(T, dσ) such that the operator KE : L2(T, dσ)→ X satisfies∑

n

‖KE (en)‖ < +∞.
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What remains to be done

• Prove that, if T admits a perfectly spanning T-eigenvector
field, then one can construct φ : C → T, u : C → X such that

‖u(s1, . . . , sn−1, 1, s
′)− u(s1, . . . , sn−1,−1, s ′′)‖ ≤ 3−n

and u(s) is a T-eigenvector with eigenvalue φ(s).

• Prove that everything remains true with KE : L2(T, dσ)→ X
instead of KE : L2(T, dm)→ X .

In fact, we will have to consider several such maps instead of one!



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

What remains to be done

• Prove that, if T admits a perfectly spanning T-eigenvector
field, then one can construct φ : C → T, u : C → X such that

‖u(s1, . . . , sn−1, 1, s
′)− u(s1, . . . , sn−1,−1, s ′′)‖ ≤ 3−n

and u(s) is a T-eigenvector with eigenvalue φ(s).

• Prove that everything remains true with KE : L2(T, dσ)→ X
instead of KE : L2(T, dm)→ X .

In fact, we will have to consider several such maps instead of one!



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

What remains to be done

• Prove that, if T admits a perfectly spanning T-eigenvector
field, then one can construct φ : C → T, u : C → X such that

‖u(s1, . . . , sn−1, 1, s
′)− u(s1, . . . , sn−1,−1, s ′′)‖ ≤ 3−n

and u(s) is a T-eigenvector with eigenvalue φ(s).

• Prove that everything remains true with KE : L2(T, dσ)→ X
instead of KE : L2(T, dm)→ X .

In fact, we will have to consider several such maps instead of one!



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

The construction of Cantor sets

Lemma
Let T ∈ L(X ) with a perfectly spanning T-eigenvector field. Let
also (εn) be a sequence of positive real numbers. There exist a
sequence (Ci ) of subsets of T, a sequence of homeomorphisms (φi )
from {−1, 1}N onto Ci and a sequence of continuous functions
(ui ), ui : {−1, 1}N → SX such that, setting Ei = ui ◦ φ−1

i ,

(a) for any i ≥ 1 and any λ ∈ Ci , TEi (λ) = λEi (λ);

(b) span(Ei (λ); i ≥ 1, λ ∈ Ci ) is dense in X ;

(c) for any n ≥ 1, any (s1, . . . , sn−1) ∈ {−1, 1}n−1, any
s ′, s ′′ ∈ {−1, 1}N,

‖ui (s1, . . . , sn−1, 1, s
′)− ui (s1, . . . , sn−1,−1, s ′′)‖ ≤ εn.
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How to prove this?

Step 1 Since E has a perfectly spanning T-eigenvector field,
there exists a sequence (xi ) satisfying :

• each xi belongs to SX , is a T-eigenvector and
the corresponding eigenvalues (λi ) are all
different;

• each xi is a limit of a subsequence (xnk )k≥1;
• span(xi ; i ≥ 1) is dense in X .

Step 2 The construction...
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Proof of the main result

We apply the previous lemma with εn = 3−n. We get Ci , ui , Ei , σi
and an orthonormal basis of L2(T, dσi ) such that∑

n

‖KEi
(en,i )‖ < +∞.

We set H = ⊕i≥1L2(T, dσi ) and let K : H → X be defined by

K (⊕i fi ) =
∑
i

αiKEi
(fi )

where (αi ) satisfies

(a)
∑

i α
2
i ‖Ei‖2

L2(T,σi ,X ) < +∞, so that K is well-defined;

(b)
∑

i αi
∑

n ‖KEi
(en,i )‖X < +∞, so that K is γ-radonifying.

Everything works with R = KK ∗.
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The correct statement

In fact, we have obtained the following statement:

Theorem
Let T ∈ L(X ) be such that, for any D ⊂ T countable,
ker(T − λI ;λ ∈ T\D) is a dense subset of X . Then there exists a
Gaussian measure µ on X with full support, with respect to which
T is a weakly-mixing measure-preserving transformation.
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Example - backward weighted shifts

Let Bw be the weighted backward shift on `p(N) with weight
sequence (wn):

Bw(x0, x1, . . . ) = (w1x1,w2x2,w3x3, . . . ).

Suppose that ∑
n≥1

1

(w1 · · ·wn)p
<∞ .

There exists a Gaussian measure µ on `p(N) with full support, with
respect to which Bw is a measure-preserving and weakly mixing
transformation.
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Example - backward weighted shifts

The condition ∑
n≥1

1

(w1 · · ·wn)p
<∞ .

ensures that Bw admit T-eigenvectors:

E (λ) :=
∑
n≥0

λn

w1 · · ·wn
en .

This eigenvector field is perfectly spanning.
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Example - backward weighted shifts

E (λ) :=
∑
n≥0

λn

w1 · · ·wn
en .

is perfectly spanning.

Pick y ∈ `q such that

〈y ,E (λ)〉 = 0 a.e..

Then
g(λ) =

∑
n

yn
w1 . . .wn

λn = 0 a.e..

=⇒ ĝ(n) = 0 for all n ∈ N.
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=⇒ ĝ(n) = 0 for all n ∈ N.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

Example - backward weighted shifts

E (λ) :=
∑
n≥0

λn

w1 · · ·wn
en .

is perfectly spanning. Pick y ∈ `q such that

〈y ,E (λ)〉 = 0 a.e..

Then
g(λ) =

∑
n

yn
w1 . . .wn

λn = 0 a.e..
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Example - Adjoints of multipliers

H2(D) =

{
f : D→ C; ‖f ‖2

H2 := sup
r<1

∫ π

−π
|f (re iθ)|2 dθ

2π
<∞

}
=

{
f (z) =

∑
n

anzn;
∑
n

|an|2 < +∞

}
.

H∞(D) = {f : D→ C; ‖f ‖∞ < +∞} .

Definition
For φ ∈ H∞(D), the multiplier Mφ is defined by Mφ(f ) = φf ,
f ∈ H2(D).

Theorem
If φ is non-constant and φ(D) ∩ T 6= ∅, then there exists a
Gaussian measure with full support on H2(D) with respect to which
M∗φ is a measure-preserving and weakly mixing transformation.
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Adjoints of multipliers

Let kz be the reproducing kernel at z ∈ D:

∀f ∈ H2(D) : f (z) = 〈f , kz〉H2 .

kz is an eigenvector for M∗φ.

〈f ,M∗φ(kz)〉
H2 = 〈φf , kz〉H2 = φ(z)f (z) = 〈f , φ(z)kz〉H2 .

When φ(D) ∩ T 6= ∅, one can find an open arc I ⊂ T and a curve
Γ ⊂ D such that φ(Γ) = I .

E (e iθ) := 1I (e iθ)kφ−1(e iθ).

is a (conjugate) T-eigenvector field.
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Adjoints of multipliers

E (e iθ) := 1I (e iθ)kφ−1(e iθ).

is perfectly spanning.

Pick f ∈ H2(D) such that

〈f ,E (e iθ)〉 = 0 a.e.

f (z) = 0 a.e. on Γ.

f ≡ 0.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

Adjoints of multipliers

E (e iθ) := 1I (e iθ)kφ−1(e iθ).

is perfectly spanning. Pick f ∈ H2(D) such that

〈f ,E (e iθ)〉 = 0 a.e.

f (z) = 0 a.e. on Γ.

f ≡ 0.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

Adjoints of multipliers

E (e iθ) := 1I (e iθ)kφ−1(e iθ).

is perfectly spanning. Pick f ∈ H2(D) such that

〈f ,E (e iθ)〉 = 0 a.e.

f (z) = 0 a.e. on Γ.

f ≡ 0.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

Adjoints of multipliers

E (e iθ) := 1I (e iθ)kφ−1(e iθ).

is perfectly spanning. Pick f ∈ H2(D) such that

〈f ,E (e iθ)〉 = 0 a.e.

f (z) = 0 a.e. on Γ.

f ≡ 0.



Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure

And so on...

• Many other examples (composition operators,...);

• Many other results (about the converse, on semigroups of
operators,...)



Muchas gracias!
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