◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Ergodic theory and linear dynamics

#### Frédéric Bayart

Université Clermont-Ferrand 2

February 2011

## Ergodic theory

Let 
$$(X, \mathcal{B}, \mu)$$
 be a probability space and let  
 $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  be a measurable map.

Definition

- (a) T is called a measure-preserving transformation if  $\mu(T^{-1}(A)) = \mu(A)$  for all  $A \in \mathcal{B}$ .
- (b) *T* is called **ergodic** if it is measure-preserving and satisfies one of the following equivalent conditions:
  - (i) Given any measurable sets A, B with positive measures, one can find an integer  $n \ge 0$  such that  $T^n(A) \cap B \ne \emptyset$ ;
  - (ii) if  $A \in \mathcal{B}$  satisfies  $T(A) \subset A$ , then  $\mu(A) = 0$  or 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Example - Irrational rotations

Let  $X = \mathbb{T}$ , let  $\mathcal{B}$  be the Borel  $\sigma$ -algebra on  $\mathbb{T}$  and let  $\mu$  be the Lebesgue measure on  $\mathbb{T}$ . Let  $\theta \in \mathbb{R} \setminus \mathbb{Q}$ . Then

$$egin{array}{rcl} T:(X,\mathcal{B},\mu)&
ightarrow&(X,\mathcal{B},\mu)\ &&z&\mapsto&e^{i2\pi heta}z \end{array}$$

is ergodic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Example - Dyadic transformation

Let X = [0, 1), let  $\mathcal{B}$  be the Borel  $\sigma$ -algebra on X and let  $\mu$  be the Lebesgue measure on X. Then

$$egin{array}{rcl} \mathcal{T}:(\mathcal{X},\mathcal{B},\mu)&
ightarrow&(\mathcal{X},\mathcal{B},\mu)\ &x&\mapsto&2x\mod1 \end{array}$$

is ergodic.

# Example - Bernoulli shift

Let  $X = \{-1,1\}^{\mathbb{Z}}$ , let  $\mathcal{B}$  be the  $\sigma$ -algebra generated by cylinder sets:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Example - Bernoulli shift

Let  $X = \{-1,1\}^{\mathbb{Z}}$ , let  $\mathcal{B}$  be the  $\sigma$ -algebra generated by cylinder sets:

$$\{x \in X; (x_n, \ldots, x_p) \in E_n \times \cdots \times E_p\}, E_j \subset \{-1, 1\}.$$

# Example - Bernoulli shift

Let  $X = \{-1,1\}^{\mathbb{Z}}$ , let  $\mathcal{B}$  be the  $\sigma$ -algebra generated by cylinder sets:

$$\{x \in X; (x_n, \ldots, x_p) \in E_n \times \cdots \times E_p\}, E_j \subset \{-1, 1\}.$$

 $\mu_k$  is defined by  $\mu_k(\{1\}) = 1/2$  and  $\mu_k(\{-1\}) = 1/2$ . Let  $\mu = \cdots \otimes \mu_{-1} \otimes \mu_0 \otimes \mu_1 \otimes \ldots$ , namely

$$\mu(\{x \in X; (x_n, \ldots, x_p) \in E_n \times \cdots \times E_p\}) = \mu_n(E_n) \times \cdots \times \mu_p(E_p).$$

Then

$$egin{array}{rcl} \mathcal{T}: (\mathcal{X}, \mathcal{B}, \mu) & o & (\mathcal{X}, \mathcal{B}, \mu) \ & (x_n) & \mapsto & (x_{n+1}) \end{array}$$

is ergodic.

Why?

STRATEGY: Let  $T \in \mathfrak{L}(X)$ . Suppose that we can construct a measure  $\mu$  defined on the Borel  $\sigma$ -algebra  $\mathcal{B}$  of X, such that

- μ has full support (namely μ(U) > 0 for any non-empty open set U ⊂ X);
- T is ergodic with respect to µ (namely µ(A)µ(B) ≠ 0 implies that there exists n ∈ N with T<sup>n</sup>(A) ∩ B ≠ Ø.)

Then T is topologically transitive, hence hypercyclic.

Introduction

# Birkhoff's ergodic theorem

#### Theorem

Let  $(X, \mathcal{B}, \mu)$  be a probability space and let  $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  be a measure-preserving ergodic transformation. For any  $f \in L^1(X, \mu)$ ,

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)\xrightarrow{N\to\infty}\int_X fd\mu \quad \mu\text{-a.e.}$$

# Birkhoff's ergodic theorem

#### Theorem

Let  $(X, \mathcal{B}, \mu)$  be a probability space and let  $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  be a measure-preserving ergodic transformation. For any  $f \in L^1(X, \mu)$ ,

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)\xrightarrow{N\to\infty}\int_X fd\mu \quad \mu\text{-a.e.}$$

#### Corollary

Let  $T \in \mathfrak{L}(X)$ . Assume that T is an ergodic transformation with respect to a Borel probability measure  $\mu$  on X with full support. Then  $\mu$ -almost every point  $x \in X$  has the following property: for every non-empty open set  $V \subset X$ , one has

$$\liminf_{N\to\infty}\frac{\operatorname{card}\left\{n\in[0,N);\ T^n(x)\in V\right\}}{N}>0.$$

Thus, if we can construct a probability measure  $\mu$  defined on the Borel  $\sigma$ -algebra  $\mathcal{B}$  of X, such that

- µ has full support (namely µ(U) > 0 for any non-empty open set U ⊂ X);
- T is ergodic with respect to  $\mu$ .

Then  $\mu$ -almost every point  $x \in X$  has the following property: for every non-empty open set  $V \subset X$ , one has

$$\liminf_{N\to\infty} \frac{\operatorname{card} \left\{ n \in [0, N); \ T^n(x) \in V \right\}}{N} > 0.$$
 (1)

Thus, if we can construct a probability measure  $\mu$  defined on the Borel  $\sigma$ -algebra  $\mathcal{B}$  of X, such that

- µ has full support (namely µ(U) > 0 for any non-empty open set U ⊂ X);
- *T* is ergodic with respect to  $\mu$ .

Then  $\mu$ -almost every point  $x \in X$  has the following property: for every non-empty open set  $V \subset X$ , one has

$$\liminf_{N\to\infty} \frac{\operatorname{card} \left\{ n \in [0, N); \ T^n(x) \in V \right\}}{N} > 0.$$
 (1)

Hypercyclic operators satisfying the stronger condition (1) are called **frequently hypercyclic**. Moreover, we get that the set of (frequently) hypercyclic vectors is large in a probabilistic sense.

## Questions to solve

• What kind of measures shall we consider?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Questions to solve

- What kind of measures shall we consider?
- Given T ∈ 𝔅(X) and a measure µ on X, how to prove that T is a measure-preserving transformation?

## Questions to solve

- What kind of measures shall we consider?
- Given T ∈ 𝔅(X) and a measure µ on X, how to prove that T is a measure-preserving transformation?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is ergodic with respect to µ?

## Questions to solve

- What kind of measures shall we consider?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is a measure-preserving transformation?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is ergodic with respect to µ?
- What kind of conditions on T ∈ L(X) ensures that we can construct a measure µ on X such that the dynamical system (T, µ) is ergodic?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Real Gaussian variables

For any  $\sigma > 0$ , let us denote by  $\gamma_{\sigma}$  the centered Gaussian measure on  $\mathbb{R}$  with variance  $\sigma^2$ ; that is,

$$d\gamma_\sigma = rac{1}{\sigma\sqrt{2\pi}}\,e^{-rac{t^2}{2\sigma^2}}\,dt\,.$$

# Real Gaussian variables

For any  $\sigma>0$ , let us denote by  $\gamma_{\sigma}$  the centered Gaussian measure on  $\mathbb R$  with variance  $\sigma^2$ ; that is,

$$d\gamma_{\sigma} = rac{1}{\sigma\sqrt{2\pi}} \, e^{-rac{t^2}{2\sigma^2}} \, dt \, .$$

 $\left. \begin{array}{l} X_1 \sim \gamma_{\sigma_1} \\ X_2 \sim \gamma_{\sigma_2} \\ X_1 \mbox{ and } X_2 \mbox{ are independent } \end{array} \right\} \implies X_1 + X_2 \sim \gamma_{\sigma} \mbox{ with } \sigma^2 = \sigma_1^2 + \sigma_2^2.$ 

## Real Gaussian variables

For any  $\sigma > 0$ , let us denote by  $\gamma_{\sigma}$  the centered Gaussian measure on  $\mathbb{R}$  with variance  $\sigma^2$ ; that is,

$$d\gamma_{\sigma} = rac{1}{\sigma\sqrt{2\pi}} e^{-rac{t^2}{2\sigma^2}} dt$$
 .

 $\left. \begin{array}{l} X_1 \sim \gamma_{\sigma_1} \\ X_2 \sim \gamma_{\sigma_2} \\ X_1 \mbox{ and } X_2 \mbox{ are independent } \end{array} \right\} \implies X_1 + X_2 \sim \gamma_{\sigma} \mbox{ with } \sigma^2 = \sigma_1^2 + \sigma_2^2.$ 

If  $(X_n)$  are independent random variables,  $X_n \sim \gamma_{\sigma_n}$  and if  $\sum_n \sigma_n^2 < +\infty$ , then  $\sum_n X_n \sim \gamma_{\sigma}$  with  $\sigma^2 = \sum_n \sigma_n^2$ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Complex Gaussian variables

### Definition

A complex-valued random variable  $Z : \Omega \to \mathbb{C}$  defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is said to have **complex symmetric Gaussian distribution** if either Z is almost surely 0, or the real and imaginary parts of Z are independent and have centered Gaussian distribution with the same variance.

# Complex Gaussian variables

### Definition

A complex-valued random variable  $Z : \Omega \to \mathbb{C}$  defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is said to have **complex symmetric Gaussian distribution** if either Z is almost surely 0, or the real and imaginary parts of Z are independent and have centered Gaussian distribution with the same variance.

#### Remark

Let Z be a complex random variable with complex Gaussian distribution,  $\mathbb{E}(|Z|^2) = \sigma^2$ , and write it Z = X + iY. Then  $\mathbb{E}(|X|^2) = \sigma^2/2$  and  $\mathbb{E}(|Y|^2) = \sigma^2/2$ . If  $\mathbb{E}|Z|^2 = 1$ , then Z is said to be **standard**.

# Complex Gaussian variables

### Definition

A complex-valued random variable  $Z : \Omega \to \mathbb{C}$  defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is said to have **complex symmetric Gaussian distribution** if either Z is almost surely 0, or the real and imaginary parts of Z are independent and have centered Gaussian distribution with the same variance.

#### Remark

Let Z be a complex random variable with complex Gaussian distribution,  $\mathbb{E}(|Z|^2) = \sigma^2$ , and write it Z = X + iY. Then  $\mathbb{E}(|X|^2) = \sigma^2/2$  and  $\mathbb{E}(|Y|^2) = \sigma^2/2$ . If  $\mathbb{E}|Z|^2 = 1$ , then Z is said to be **standard**.

#### Remark

Suppose that Z has complex symmetric Gaussian distribution. Then, for any  $\lambda \in \mathbb{C}$ ,  $\lambda Z$  has complex symmetric Gaussian distribution and  $\mathbb{E}(|\lambda Z|^2) = |\lambda|^2 \mathbb{E}(|Z|^2)$ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Gaussian measures

### Definition

A **Gaussian measure** on X is a probability measure  $\mu$  on X such that each continuous linear functional  $x^* \in X^*$  has symmetric complex Gaussian distribution, when considered as a random variable on  $(X, \mathcal{B}, \mu)$ .

## Gaussian measures

### Definition

A **Gaussian measure** on X is a probability measure  $\mu$  on X such that each continuous linear functional  $x^* \in X^*$  has symmetric complex Gaussian distribution, when considered as a random variable on  $(X, \mathcal{B}, \mu)$ .

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space, and let  $(g_n)_{n \in \mathbb{N}}$  be a sequence of independent standard complex Gaussian variables defined on  $(\Omega, \mathcal{F}, \mathbb{P})$ . Such a sequence  $(g_n)$  will be called a **standard Gaussian sequence**.

## Gaussian measures

### Definition

A **Gaussian measure** on X is a probability measure  $\mu$  on X such that each continuous linear functional  $x^* \in X^*$  has symmetric complex Gaussian distribution, when considered as a random variable on  $(X, \mathcal{B}, \mu)$ .

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space, and let  $(g_n)_{n \in \mathbb{N}}$  be a sequence of independent standard complex Gaussian variables defined on  $(\Omega, \mathcal{F}, \mathbb{P})$ . Such a sequence  $(g_n)$  will be called a **standard Gaussian sequence**.

### Definition

A **Gaussian sum** in X is a sum  $\sum_{n} g_n x_n$  where  $(x_n)$  is a sequence of vectors in X.

# Convergence of Gaussian sums

### Proposition

- Let  $(x_n) \subset X$ . The following are equivalent :
  - (i) The Gaussian sum  $\sum_{n} g_n x_n$  converges almost surely.
  - (ii) The Gaussian sum  $\sum_{n} g_n x_n$  converges in  $L^p$ , for some  $p \in [1, +\infty)$ ;
- (iii) The Gaussian sum  $\sum_{n} g_n x_n$  converges in  $L^p$ , for any  $p \in [1, +\infty)$ ;
- (iv) The Gaussian sum  $\sum_{n} g_n x_n$  converges in probability.
- If X is a Hilbert space, this is equivalent to  $\sum_n ||x_n||^2 < +\infty$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Distribution of a Gaussian sum

The distribution of the Gaussian sum  $\sum_n g_n x_n$  is defined by

$$\mu(A) = \mathbb{P}\left(\left\{\omega \in \Omega; \sum_{n} g_{n}(\omega) x_{n} \in A\right\}\right).$$

# Distribution of a Gaussian sum

The distribution of the Gaussian sum  $\sum_{n} g_n x_n$  is defined by

$$\mu(A) = \mathbb{P}\left(\left\{\omega \in \Omega; \sum_{n} g_{n}(\omega) x_{n} \in A\right\}\right).$$

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Distribution of Gaussian sums are Gaussian measures

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

# Distribution of Gaussian sums are Gaussian measures

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

### Definition

A **Gaussian measure** on X is a probability measure  $\mu$  on X such that each continuous linear functional  $x^* : (X, \mathcal{B}, \mu) \to (\mathbb{C}, \mathcal{B}(\mathbb{C}))$  has symmetric complex Gaussian distribution.

# Distribution of Gaussian sums are Gaussian measures

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

### Definition

A **Gaussian measure** on X is a probability measure  $\mu$  on X such that each continuous linear functional  $x^* : (X, \mathcal{B}, \mu) \to (\mathbb{C}, \mathcal{B}(\mathbb{C}))$  has symmetric complex Gaussian distribution.

• Step 1: the same result on  $\mathbb{R}$ . If  $(X_n)$  are independent random variables,  $X_n \sim \gamma_{\sigma_n}$  and if  $\sum_n \sigma_n^2 < +\infty$ , then  $\sum_n X_n \sim \gamma_{\sigma}$  with  $\sigma^2 = \sum_n \sigma_n^2$ .

# Distribution of Gaussian sums are Gaussian measures

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

### Definition

A **Gaussian measure** on X is a probability measure  $\mu$  on X such that each continuous linear functional  $x^* : (X, \mathcal{B}, \mu) \to (\mathbb{C}, \mathcal{B}(\mathbb{C}))$  has symmetric complex Gaussian distribution.

Step 1: the same result on ℝ. If (X<sub>n</sub>) are independent random variables, X<sub>n</sub> ~ γ<sub>σ<sub>n</sub></sub> and if ∑<sub>n</sub> σ<sup>2</sup><sub>n</sub> < +∞, then ∑<sub>n</sub> X<sub>n</sub> ~ γ<sub>σ</sub> with σ<sup>2</sup> = ∑<sub>n</sub> σ<sup>2</sup><sub>n</sub>.
Step 2: the same result on ℂ.

#### Lemma

Let  $(a_n)$  be a sequence of complex numbers such that  $\sum_n |a_n|^2 < +\infty$ . Then  $\sum_n g_n a_n$  has complex symmetric Gaussian distribution.

# Distribution of Gaussian sums are Gaussian measures

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

#### Proof.

Let  $x^* : (X, \mathcal{B}, \mu) \to (\mathbb{C}, \mathcal{B}(\mathbb{C}))$  and let  $A \in \mathcal{B}(\mathbb{C})$ . Does  $x^*$  has symmetric complex Gaussian distribution?

$$\mu(x^{*-1}(A)) = \mathbb{P}\left(\left\{\omega \in \Omega; \left\langle x^*, \sum_n g_n x_n \right\rangle \in A\right\}\right)$$
$$= \mathbb{P}\left(\left\{\omega \in \Omega; \sum_n g_n \langle x^*, x_n \rangle \in A\right\}\right)$$

...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

# Distribution of Gaussian sums are Gaussian measures

#### Theorem

If the series  $\sum_{n} g_n x_n$  is almost surely convergent, then its distribution is a Gaussian measure.

#### Proof.

Let  $x^* : (X, \mathcal{B}, \mu) \to (\mathbb{C}, \mathcal{B}(\mathbb{C}))$  and let  $A \in \mathcal{B}(\mathbb{C})$ . Does  $x^*$  has symmetric complex Gaussian distribution?

$$\mu(x^{*-1}(A)) = \mathbb{P}\left(\left\{\omega \in \Omega; \left\langle x^*, \sum_n g_n x_n \right\rangle \in A\right\}\right)$$
$$= \mathbb{P}\left(\left\{\omega \in \Omega; \sum_n g_n \langle x^*, x_n \rangle \in A\right\}\right)$$

...and by the lemma  $\sum_{n} g_n \langle x^*, x_n \rangle$  has complex symmetric Gaussian distribution.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## The covariance operator

Gaussian variables on  $\ensuremath{\mathbb{R}}$  are characterized by their mean and their variance.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## The covariance operator

Gaussian variables on  $\ensuremath{\mathbb{R}}$  are characterized by their mean and their variance.

Gaussian vectors on  $\mathbb{R}^d$  are characterized by their mean and their covariance matrix.

#### The covariance operator

Gaussian variables on  $\ensuremath{\mathbb{R}}$  are characterized by their mean and their variance.

Gaussian vectors on  $\mathbb{R}^d$  are characterized by their mean and their covariance matrix.

#### Theorem

Let  $\mu$  be a Gaussian measure on X.

(1) One can define a continuous, conjugate-linear operator  $R_{\mu}: X^* \to X$  such that, for every  $(x^*, y^*) \in X^* \times X^*$ :

$$\langle R_{\mu}(x^*), y^* 
angle = \int_X \overline{\langle x^*, z 
angle} \langle y^*, z 
angle \, d\mu(z) = \langle x^*, y^* 
angle_{L^2(\mu)}.$$

The operator  $R_{\mu}$  is called the **covariance operator** of  $\mu$ . (2) Two Gaussian measures on X coincide if and only if they have the same covariance operator.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Factorisation of the covariance operator

$$\langle R_{\mu}(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z) = \langle x^*, y^* \rangle_{L^2(\mu)}.$$

- $R_{\mu}$  is symmetric:  $\langle R_{\mu}(x^*), y^* \rangle = \overline{\langle x^*, R_{\mu}(y^*) \rangle};$
- $R_{\mu}$  is positive:  $\langle R_{\mu}(x^*), x^* \rangle \geq 0.$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

### Factorisation of the covariance operator

$$\langle R_{\mu}(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z) = \langle x^*, y^* \rangle_{L^2(\mu)} \, .$$

• 
$$R_{\mu}$$
 is symmetric:  $\langle R_{\mu}(x^*), y^* \rangle = \overline{\langle x^*, R_{\mu}(y^*) \rangle};$ 

• 
$$R_{\mu}$$
 is positive:  $\langle R_{\mu}(x^*), x^* \rangle \geq 0.$ 

There exists some separable Hilbert space  ${\mathcal H}$  and an operator  $K:{\mathcal H}\to X$  such that

$$R_{\mu} = KK^*.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Covariance operator and properties of  $\mu$ 

$$\langle R_{\mu}(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z) = \langle x^*, y^* \rangle_{L^2(\mu)}.$$

It characterizes the Gaussian measure  $\mu:$  one can see any property of  $\mu$  on it.

Covariance operator and properties of  $\mu$ 

$$\langle R_{\mu}(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z) = \langle x^*, y^* \rangle_{L^2(\mu)}.$$

It characterizes the Gaussian measure  $\mu$ : one can see any property of  $\mu$  on it. How to see on R (or on K) that  $\mu$  has full support?

Covariance operator and properties of  $\mu$ 

$$\langle R_{\mu}(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z) = \langle x^*, y^* \rangle_{L^2(\mu)}.$$

It characterizes the Gaussian measure  $\mu$ : one can see any property of  $\mu$  on it. How to see on R (or on K) that  $\mu$  has full support?

#### Theorem

Let  $\mu$  be a Gaussian measure and let  $R = KK^*$  be its covariance operator. Then the following properties are equivalent :

- (i)  $\mu$  has full support;
- (ii) *R* is one-to-one;
- (iii) K has dense range.

Covariance operator and properties of  $\mu$ 

$$\langle R_{\mu}(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z) = \langle x^*, y^* \rangle_{L^2(\mu)}.$$

It characterizes the Gaussian measure  $\mu$ : one can see any property of  $\mu$  on it. How to see on R (or on K) that  $\mu$  has full support?

#### Theorem

Let  $\mu$  be a Gaussian measure and let  $R = KK^*$  be its covariance operator. Then the following properties are equivalent :

- (i)  $\mu$  has full support;
- (ii) *R* is one-to-one;
- (iii) K has dense range.

The difficult implication: (*iii*)  $\implies$  (*i*).

#### Gaussian measures with full support

K has dense range  $\implies \mu$  has full support.

Step 1 The support of a Gaussian sum.

Let  $\sum_{n} g_n x_n$  be an almost surely convergent Gaussian sum and let  $\nu$  be its distribution. Let  $O \subset X$  be open such that  $O \cap \operatorname{span}(x_n) \neq \emptyset$ . Then  $\nu(O) > 0$ .

#### Gaussian measures with full support

K has dense range  $\implies \mu$  has full support.

Step 1 The support of a Gaussian sum.

Let  $\sum_{n} g_n x_n$  be an almost surely convergent Gaussian sum and let  $\nu$  be its distribution. Let  $O \subset X$  be open such that  $O \cap \operatorname{span}(x_n) \neq \emptyset$ . Then  $\nu(O) > 0$ .

The support of the distribution of a Gaussian sum  $\sum_{n} g_n x_n$  is the closure of  $\operatorname{span}(x_n)$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Gaussian measures with full support

Step 2 The covariance operator of a Gaussian sum.

1

Let  $\sum_{n} g_n x_n$  be an almost surely convergent Gaussian sum and let  $\nu$  be its distribution. Then the covariance operator of  $\nu$  is given by

$$\mathsf{R}_{\nu}(x^*) = \sum_{n} \overline{\langle x^*, x_n \rangle} \, x_n.$$

### Gaussian measures with full support

Step 2 The covariance operator of a Gaussian sum.

Let  $\sum_{n} g_n x_n$  be an almost surely convergent Gaussian sum and let  $\nu$  be its distribution. Then the covariance operator of  $\nu$  is given by

$$R_{\nu}(x^*) = \sum_n \overline{\langle x^*, x_n \rangle} x_n.$$

$$\begin{array}{lll} \langle R_{\nu}(x^{*}), y^{*} \rangle &=& \int_{X} \overline{\langle x^{*}, x \rangle} \langle y^{*}, x \rangle d\nu(x) \\ &=& \int_{\Omega} \overline{\langle x^{*}, \sum_{n} g_{n}(\omega) x_{n} \rangle} \left\langle y^{*}, \sum_{n} g_{n}(\omega) x_{n} \right\rangle d\mathbb{P}(\omega) \\ &=& \sum_{n,m} \overline{\langle x^{*}, x_{n} \rangle} \langle y^{*}, x_{m} \rangle \int_{\Omega} \overline{g_{n}(\omega)} g_{m}(\omega) d\mathbb{P}(\omega) \\ &=& \sum_{n} \overline{\langle x^{*}, x_{n} \rangle} \langle y^{*}, x_{n} \rangle \end{array}$$

### Gaussian measures with full support

Step 3 Any Gaussian measure is the distribution of a Gaussian sum

Let  $R = KK^*$  be the covariance operator of some Gaussian measure  $\mu$ . Then, for any orthonormal basis  $(e_n)$  of  $\mathcal{H}$ ,

$$Rx^* = \sum_n \overline{\langle x^*, Ke_n \rangle} Ke_n.$$

### Gaussian measures with full support

# Step 3 Any Gaussian measure is the distribution of a Gaussian sum

Let  $R = KK^*$  be the covariance operator of some Gaussian measure  $\mu$ . Then, for any orthonormal basis  $(e_n)$  of  $\mathcal{H}$ ,

$$Rx^* = \sum_n \overline{\langle x^*, Ke_n \rangle} Ke_n.$$

$$R(x^*) = K\left(\sum_{n=0}^{\infty} \langle e_n, K^*(x^*) \rangle_{\mathcal{H}} e_n\right)$$
$$= \sum_{n=0}^{\infty} \overline{\langle x^*, K(e_n) \rangle} K(e_n),$$

#### Gaussian measures with full support

K has dense range  $\implies \mu$  has full support.

- Step 1 Let  $\sum_{n} g_n x_n$  be an almost surely convergent Gaussian sum and let  $\nu$  be its distribution. Let  $O \subset X$  be open such that  $O \cap \operatorname{span}(x_n) \neq \emptyset$ . Then  $\nu(O) > 0$ .
- Step 2 Let  $\sum_{n} g_n x_n$  be an almost surely convergent Gaussian sum and let  $\nu$  be its distribution. Then the covariance operator of  $\nu$  is given by

$$R_{\nu}(x^*) = \sum_n \overline{\langle x^*, x_n \rangle} \, x_n.$$

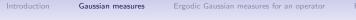
Step 3 Let  $R = KK^*$  be the covariance operator of some Gaussian measure  $\mu$ . Then, for any orthonormal basis  $(e_n)$  of  $\mathcal{H}$ ,

$$Rx^* = \sum_n \overline{\langle x^*, Ke_n \rangle} Ke_n.$$

### Questions to solve

• What kind of measures shall we consider?





▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

#### Questions to solve

- What kind of measures shall we consider?
- Given T ∈ 𝔅(X) and a measure µ on X, how to prove that T is a measure-preserving transformation?

### Questions to solve

- What kind of measures shall we consider?
- Given  $T \in \mathfrak{L}(X)$  and a measure  $\mu$  on X, how to prove that T is a measure-preserving transformation?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is ergodic with respect to µ?

#### Questions to solve

- What kind of measures shall we consider?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is a measure-preserving transformation?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is ergodic with respect to µ?
- What kind of conditions on T ∈ L(X) ensures that we can construct a measure µ on X such that the dynamical system (T, µ) is ergodic?

#### Measure-preserving transformations

#### Proposition

Let  $\mu$  be a Gaussian measure on X with covariance operator R and let  $T \in \mathfrak{L}(X)$ . Then the image measure  $\mu_T = \mu \circ T^{-1}$  is a Gaussian measure on X, with covariance operator  $TRT^*$ . In particular, T is measure-preserving if and only if  $TRT^* = R$ .

#### Measure-preserving transformations

#### Proposition

Let  $\mu$  be a Gaussian measure on X with covariance operator R and let  $T \in \mathfrak{L}(X)$ . Then the image measure  $\mu_T = \mu \circ T^{-1}$  is a Gaussian measure on X, with covariance operator  $TRT^*$ . In particular, T is measure-preserving if and only if  $TRT^* = R$ .

$$\begin{array}{lll} \langle R_T(x^*), y^* \rangle &=& \int_Y \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu_T(z) \\ &=& \int_X \overline{\langle x^*, T(z) \rangle} \langle y^*, T(z) \rangle \, d\mu(z) \\ &=& \langle RT^*x^*, T^*y^* \rangle \\ &=& \langle TRT^*(x^*), y^* \rangle. \end{array}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## What about ergodicity?

#### $\mathcal{T}: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ is ergodic provided

 $\forall (A,B) \in \mathcal{B}, \ \mu(A)\mu(B) \neq 0 \implies \exists n \in \mathbb{N}, \ T^n(A) \cap B \neq \varnothing.$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What about ergodicity?  $T: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  is ergodic provided

 $\forall (A,B) \in \mathcal{B}, \ \mu(A)\mu(B) \neq 0 \implies \exists n \in \mathbb{N}, \ T^n(A) \cap B \neq \emptyset.$ 

Birkhoff's theorem says that for an ergodic transformation T,

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)\xrightarrow{N\to\infty}\int_X fd\mu \quad \mu\text{-a.e.}$$

What about ergodicity?  $T: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  is ergodic provided

 $\forall (A,B) \in \mathcal{B}, \ \mu(A)\mu(B) \neq 0 \implies \exists n \in \mathbb{N}, \ T^n(A) \cap B \neq \emptyset.$ 

Birkhoff's theorem says that for an ergodic transformation T,

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)\xrightarrow{N\to\infty}\int_X fd\mu \quad \mu\text{-a.e.}$$

Thus,  $T: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  is ergodic

$$\iff \forall f,g \in L^2(X,\mu), \frac{1}{N} \sum_{n=0}^{N-1} \int_X f(T^n x) g(x) d\mu \xrightarrow{N \to \infty} \int_X f d\mu \int_X g d\mu,$$

What about ergodicity?  $T: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  is ergodic provided

 $\forall (A,B) \in \mathcal{B}, \ \mu(A)\mu(B) \neq 0 \implies \exists n \in \mathbb{N}, \ T^n(A) \cap B \neq \emptyset.$ 

Birkhoff's theorem says that for an ergodic transformation T,

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)\xrightarrow{N\to\infty}\int_X fd\mu \quad \mu\text{-a.e.}$$

Thus,  $T: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  is ergodic

$$\iff \forall f,g \in L^2(X,\mu), \frac{1}{N} \sum_{n=0}^{N-1} \int_X f(T^n x) g(x) d\mu \xrightarrow{N \to \infty} \int_X f d\mu \int_X g d\mu,$$

$$\iff \forall A, B \in \mathcal{B}, \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mu(T^n A \cap B) = \mu(A) \mu(B).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Weakly mixing - Strongly mixing

 $T: (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$  is weakly mixing

$$\iff \lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}|\mu(A\cap T^{-n}(B))-\mu(A)\mu(B)|=0 \ (A,B\in\mathcal{B})$$

$$\iff \lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\left|\int_X f(T^n z)g(z)\,d\mu(z)-\int_X fd\mu\int_X gd\mu\right|=0.$$

 $\mathcal{T}: (\mathcal{X}, \mathcal{B}, \mu) 
ightarrow (\mathcal{X}, \mathcal{B}, \mu)$  is strongly mixing

$$\iff \lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B) \ (A,B\in\mathcal{B})$$

$$\iff \lim_{n\to\infty}\int_X f(T^n z)g(z)\,d\mu(z) = \int_X f\,d\mu\,\int_X g\,d\mu\,\big(f,g\in L^2(X,\mu)\big).$$

### The characterization of mixing properties

#### Theorem (Rudnicki, 1993)

Let  $\mu$  be a Gaussian measure on X with full support and covariance operator R. Let  $T \in \mathfrak{L}(X)$  be measure-preserving. The following are equivalent:

 (i) T is weakly mixing (strongly mixing, respectively) with respect to μ;

(ii) For all 
$$x^*, y^* \in X^*$$
,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}|\langle RT^{*n}(x^*),y^*\rangle|=0$$

$$(\lim_{n\to\infty} \langle RT^{*n}(x^*), y^* \rangle = 0, \text{ respectively}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### The easy implication

(i) T is strongly mixing with respect to  $\mu$ , namely

$$\lim_{n\to\infty}\int_X f(T^n z)g(z)\,d\mu(z)=\int_X f\,d\mu\,\int_X g\,d\mu\,\big(f,g\in L^2(X,\mu)\big).$$

(ii) For all 
$$x^*, y^* \in X^*$$
,  $\lim_{n \to \infty} \langle RT^{*n}(x^*), y^* \rangle = 0.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### The easy implication

(i) T is strongly mixing with respect to  $\mu$ , namely

$$\lim_{n\to\infty}\int_X f(T^n z)g(z)\,d\mu(z) = \int_X f\,d\mu\,\int_X g\,d\mu\,\big(f,g\in L^2(X,\mu)\big).$$

(ii) For all 
$$x^*, y^* \in X^*$$
,  $\lim_{n \to \infty} \langle RT^{*n}(x^*), y^* \rangle = 0.$ 

$$\langle R(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z).$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

#### The easy implication

(i) T is strongly mixing with respect to  $\mu$ , namely

$$\lim_{n\to\infty}\int_X f(T^n z)g(z)\,d\mu(z)=\int_X f\,d\mu\,\int_X g\,d\mu\,\big(f,g\in L^2(X,\mu)\big).$$

(ii) For all 
$$x^*, y^* \in X^*$$
,  $\lim_{n \to \infty} \langle RT^{*n}(x^*), y^* \rangle = 0.$ 

$$\langle R(x^*), y^* 
angle = \int_X \overline{\langle x^*, z 
angle} \langle y^*, z 
angle \, d\mu(z).$$
  
 $\langle RT^{*n}(x^*), y^* 
angle = \int_X \overline{\langle x^*, T^n(z) 
angle} \langle y^*, z 
angle \, d\mu(z).$ 

### The easy implication

(i) T is strongly mixing with respect to  $\mu$ , namely

$$\lim_{n \to \infty} \int_X f(T^n z) g(z) \, d\mu(z) = \int_X f \, d\mu \, \int_X g \, d\mu \, (f, g \in L^2(X, \mu)).$$
ii) For all  $x^*, y^* \in X^*$ ,  $\lim_{n \to \infty} \langle RT^{*n}(x^*), y^* \rangle = 0.$ 

$$\langle R(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z).$$

$$\langle RT^{*n}(x^*), y^* \rangle = \int_X \overline{\langle x^*, T^n(z) \rangle} \langle y^*, z \rangle \, d\mu(z).$$

$$\langle RT^{*n}(x^*), y^* \rangle \to \int_X \overline{\langle x^*, z \rangle d\mu(z)} \int_X \overline{\langle y^*, z \rangle d\mu(z)} = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### The difficult implication - I

#### Assumption:

$$\lim_{n\to\infty} \langle RT^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

#### Conclusion:

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B)\ (A,B\in\mathcal{B}).$$
 (2)

### The difficult implication - I

#### Assumption:

$$\lim_{n\to\infty} \langle RT^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

#### Conclusion:

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B)\ (A,B\in\mathcal{B}).$$
 (2)

#### Definition

 $A \subset X$  is a **cylinder set** if there exist  $N \ge 1$ ,  $(x_1^*, \ldots, x_N^*)$  a family of independent vectors of  $X^*$  and  $E \subset \mathbb{C}^N$  such that

$$A = \left\{ x \in X; \ \left( \langle x_1^*, x \rangle, \dots, \langle x_N^*, x \rangle \right) \in E \right\}.$$

### The difficult implication - I

#### Assumption:

$$\lim_{n\to\infty} \langle RT^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

#### Conclusion:

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B)\ (A,B\in\mathcal{B}).$$
 (2)

#### Definition

 $A \subset X$  is a **cylinder set** if there exist  $N \ge 1$ ,  $(x_1^*, \ldots, x_N^*)$  a family of independent vectors of  $X^*$  and  $E \subset \mathbb{C}^N$  such that

$$A = \left\{ x \in X; \ \left( \langle x_1^*, x \rangle, \dots, \langle x_N^*, x \rangle \right) \in E \right\}.$$

It suffices to testify (2) for A, B cylinder sets.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

### The difficult implication - II

#### Definition

 $A \subset X$  is a **cylinder set** if there exist  $N \ge 1$ ,  $(x_1^*, \ldots, x_N^*)$  a family of independent vectors of  $X^*$  and  $E \subset \mathbb{C}^N$  such that

$$A = \left\{ x \in X; \ \left( \langle x_1^*, x \rangle, \dots, \langle x_N^*, x \rangle \right) \in E \right\}.$$

Cylinder sets are "finite-dimensional sets"

### The difficult implication - II

#### Definition

 $A \subset X$  is a **cylinder set** if there exist  $N \ge 1$ ,  $(x_1^*, \ldots, x_N^*)$  a family of independent vectors of  $X^*$  and  $E \subset \mathbb{C}^N$  such that

$$A = \left\{ x \in X; \ \left( \langle x_1^*, x \rangle, \dots, \langle x_N^*, x \rangle \right) \in E \right\}.$$

Cylinder sets are "finite-dimensional sets"  $\implies$  we need a finite-dimensional lemma.

#### Lemma

Let  $(\nu_n)$  be a sequence of Gaussian measures on some finite-dimensional Banach space  $E = \mathbb{C}^N$ , and let  $\nu$  be a Gaussian measure on E with full support. Assume that  $R_{\nu_n} \to R_{\nu}$  as  $n \to \infty$ . Then  $\nu_n(Q) \to \nu(Q)$  for every Borel set  $Q \subset E$ .

### The difficult implication - III

#### Assumption:

$$\lim_{n\to\infty} \langle RT^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

$$\begin{aligned} A &= \left\{ x \in X; \ \left( \langle x_1^*, x \rangle, \dots, \langle x_N^*, x \rangle \right) \in E \right\} \\ B &= \left\{ x \in X; \ \left( \langle y_1^*, x \rangle, \dots, \langle y_M^*, x \rangle \right) \in F \right\}. \end{aligned}$$

Aim :

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B).$$

Tool :

#### Lemma

Let  $(\nu_n)$  be a sequence of Gaussian measures on some finite-dimensional Banach space  $E = \mathbb{C}^N$ , and let  $\nu$  be a Gaussian measure on E with full support. Assume that  $R_{\nu_n} \to R_{\nu}$  as  $n \to \infty$ . Then  $\nu_n(Q) \to \nu(Q)$  for every Borel set  $Q \subset E$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### Summary

• We consider Gaussian measures  $\mu$  on X;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Summary

- We consider Gaussian measures  $\mu$  on X;
- They are characterized by their covariance operator  $R = KK^*$

$$\langle R(x^*), y^* 
angle = \int_X \overline{\langle x^*, z 
angle} \langle y^*, z 
angle \, d\mu(z);$$

# Summary

- We consider Gaussian measures  $\mu$  on X;
- They are characterized by their covariance operator  $R = KK^*$

$$\langle R(x^*), y^* 
angle = \int_X \overline{\langle x^*, z 
angle} \langle y^*, z 
angle \, d\mu(z);$$

•  $\mu$  has full support if and only if K has dense range;

# Summary

- We consider Gaussian measures  $\mu$  on X;
- They are characterized by their covariance operator  $R = KK^*$

$$\langle R(x^*), y^* 
angle = \int_X \overline{\langle x^*, z 
angle} \langle y^*, z 
angle \, d\mu(z);$$

- $\mu$  has full support if and only if K has dense range;
- $T \in \mathfrak{L}(X)$  is measure-preserving if and only if  $TRT^* = T$ ;

# Summary

- We consider Gaussian measures  $\mu$  on X;
- They are characterized by their covariance operator  $R = KK^*$

$$\langle R(x^*), y^* 
angle = \int_X \overline{\langle x^*, z 
angle} \langle y^*, z 
angle \, d\mu(z);$$

- $\mu$  has full support if and only if K has dense range;
- $T \in \mathfrak{L}(X)$  is measure-preserving if and only if  $TRT^* = T$ ;
- $T \in \mathfrak{L}(X)$  is strongly-mixing if and only if

$$\lim_{n\to\infty} \langle RT^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

・ロト・雪ト・雪ト・雪・ 今日・

#### Questions to solve

- What kind of measures shall we consider?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is a measure-preserving transformation?
- Given T ∈ L(X) and a measure µ on X, how to prove that T is ergodic with respect to µ?
- What kind of conditions on T ∈ L(X) ensures that we can construct a measure µ on X such that the dynamical system (T, µ) is ergodic?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Having sufficiently many $\mathbb{T}$ -eigenvectors

#### Definition

# A vector $x \in X$ is a **T**-eigenvector for T if $T(x) = \lambda x$ for some $\lambda \in \mathbb{T}$ .

# Having sufficiently many $\mathbb{T}\text{-eigenvectors}$

#### Definition

A vector  $x \in X$  is a **T**-eigenvector for T if  $T(x) = \lambda x$  for some  $\lambda \in \mathbb{T}$ .

#### Definition

A map  $E : \mathbb{T} \to X$  is a **perfectly spanning**  $\mathbb{T}$ -eigenvector field provided

(i) 
$$E \in L^{\infty}(\mathbb{T}, X)$$
;

(ii)  $\forall \lambda \in \mathbb{T}, \ TE(\lambda) = \lambda E(\lambda);$ 

(iii) For any  $A \subset \mathbb{T}$  with m(A) = 0, then span $(E(\lambda); \lambda \in A)$  is dense in A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### The operator $K_E$

Let  $T \in \mathfrak{L}(X)$  with a perfectly spanning  $\mathbb{T}$ -eigenvector field E. Define

$$\mathcal{K}_E: L^2(\mathbb{T}, dm) \rightarrow X$$
  
 $f \mapsto \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda)$ 

and  $R = K_E K_E^*$ . Then

- 1. K<sub>E</sub> has dense range;
- 2.  $TRT^* = T$ ;
- 3. For any  $x^*, y^* \in X^*$ ,  $\langle RT^{*n}(x^*), y^* \rangle \to 0$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# The intertwining equation

$$egin{array}{rcl} \mathcal{K}_E: L^2(\mathbb{T}, dm) & o & X \ f & \mapsto & \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### The intertwining equation

$$\begin{array}{rcl} \mathcal{K}_{E}: L^{2}(\mathbb{T}, dm) & \rightarrow & X \\ f & \mapsto & \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda) \\ \\ \mathcal{V}: L^{2}(\mathbb{T}, dm) & \rightarrow & L^{2}(\mathbb{T}, dm) \\ f & \mapsto & zf \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### The intertwining equation

$$\begin{array}{rcl} \mathcal{K}_{E}: L^{2}(\mathbb{T}, dm) & \rightarrow & X \\ f & \mapsto & \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda) \\ \\ V: L^{2}(\mathbb{T}, dm) & \rightarrow & L^{2}(\mathbb{T}, dm) \\ f & \longmapsto & \mathcal{T}_{F} \end{array}$$

TK = KV.

# The intertwining equation

$$\begin{array}{rcl} \mathcal{K}_{E}: L^{2}(\mathbb{T},dm) & \rightarrow & X \\ f & \mapsto & \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda) \\ \\ V: L^{2}(\mathbb{T},dm) & \rightarrow & L^{2}(\mathbb{T},dm) \\ f & \mapsto & zf \end{array}$$

$$TK = KV.$$

$$TK_{E}(f) = \int_{\mathbb{T}} f(\lambda) TE(\lambda) dm(\lambda)$$
  
= 
$$\int_{\mathbb{T}} f(\lambda) \lambda E(\lambda) dm(\lambda)$$
  
= 
$$KVf.$$

### Comparison

### Comparison

Let  $T \in \mathfrak{L}(X)$  with a perfectly spanning  $\mathbb{T}$ -eigenvector field E, let  $R = K_E K_E^*$  and let  $\mu$  be a Gaussian measure on X.

1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range;

### Comparison

Let  $T \in \mathfrak{L}(X)$  with a perfectly spanning  $\mathbb{T}$ -eigenvector field E, let  $R = K_E K_E^*$  and let  $\mu$  be a Gaussian measure on X.

1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range; Ok for  $K_E$ !

# Comparison

- 1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range; Ok for  $K_E$ !
- 2. *T* is measure-preserving if and only if  $TR_{\mu}T^* = T$ ;

# Comparison

- 1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range; Ok for  $K_E$ !
- 2. *T* is measure-preserving if and only if  $TR_{\mu}T^* = T$ ; Ok for *R*!

### Comparison

- 1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range; Ok for  $K_E$ !
- 2. *T* is measure-preserving if and only if  $TR_{\mu}T^* = T$ ; Ok for *R*!
- 3.  $T \in \mathfrak{L}(X)$  is strongly-mixing with respect to  $\mu$  if and only if

$$\lim_{n\to\infty} \langle R_{\mu}T^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

# Comparison

Let  $T \in \mathfrak{L}(X)$  with a perfectly spanning  $\mathbb{T}$ -eigenvector field E, let  $R = K_E K_E^*$  and let  $\mu$  be a Gaussian measure on X.

- 1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range; Ok for  $K_E$ !
- 2. *T* is measure-preserving if and only if  $TR_{\mu}T^* = T$ ; Ok for *R*!
- 3.  $T \in \mathfrak{L}(X)$  is strongly-mixing with respect to  $\mu$  if and only if

$$\lim_{n\to\infty} \langle R_{\mu} T^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

Ok for R!

# Comparison

Let  $T \in \mathfrak{L}(X)$  with a perfectly spanning  $\mathbb{T}$ -eigenvector field E, let  $R = K_E K_E^*$  and let  $\mu$  be a Gaussian measure on X.

- 1.  $\mu$  has full support if and only if  $K_{\mu}$  has dense range; Ok for  $K_E$ !
- 2. *T* is measure-preserving if and only if  $TR_{\mu}T^* = T$ ; Ok for *R*!
- 3.  $T \in \mathfrak{L}(X)$  is strongly-mixing with respect to  $\mu$  if and only if

$$\lim_{n\to\infty} \langle R_{\mu} T^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

Ok for *R*!

Is R the covariance operator of some Gaussian measure  $\mu$ ?

#### Is $R: X^* \to X$ a covariance operator?

This is a difficult problem!



# Is $R: X^* \to X$ a covariance operator?

#### This is a difficult problem!

#### Definition

Let  $\mathcal{H}$  be a separable Hilbert space. An operator  $K \in \mathfrak{L}(\mathcal{H}, X)$  is said to be  $\gamma$ -radonifying if for some (equivalently, for any) orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

# Is $R: X^* \to X$ a covariance operator?

#### This is a difficult problem!

#### Definition

Let  $\mathcal{H}$  be a separable Hilbert space. An operator  $K \in \mathfrak{L}(\mathcal{H}, X)$  is said to be  $\gamma$ -**radonifying** if for some (equivalently, for any) orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

#### Proposition

Let  $K \in \mathfrak{L}(\mathcal{H}, X)$  be  $\gamma$ -radonifying. Then  $R = KK^*$  is the covariance operator of some Gaussian measure  $\mu$  on X.

# Is $R: X^* \to X$ a covariance operator?

#### This is a difficult problem!

#### Definition

Let  $\mathcal{H}$  be a separable Hilbert space. An operator  $K \in \mathfrak{L}(\mathcal{H}, X)$  is said to be  $\gamma$ -**radonifying** if for some (equivalently, for any) orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

#### Proposition

Let  $K \in \mathfrak{L}(\mathcal{H}, X)$  be  $\gamma$ -radonifying. Then  $R = KK^*$  is the covariance operator of some Gaussian measure  $\mu$  on X.

It suffices to take for  $\mu$  the distribution of the Gaussian sum  $\sum_n g_n K e_n.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### On a Hilbert space

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

Fact. On a Hilbert space, a Gaussian sum  $\sum_n g_n x_n$  converges almost surely if and only if  $\sum_n ||x_n||^2 < +\infty$ .

# On a Hilbert space

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

Fact. On a Hilbert space, a Gaussian sum  $\sum_n g_n x_n$  converges almost surely if and only if  $\sum_n ||x_n||^2 < +\infty$ .

On a Hilbert space,  $\gamma$ -radonifying operators and Hilbert-Schmidt operators coincide!

### On a Hilbert space

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

Fact. On a Hilbert space, a Gaussian sum  $\sum_n g_n x_n$  converges almost surely if and only if  $\sum_n ||x_n||^2 < +\infty$ .

On a Hilbert space,  $\gamma$ -radonifying operators and Hilbert-Schmidt operators coincide!

$$\begin{array}{rcl} \mathcal{K}_{E}: L^{2}(\mathbb{T}, dm) & \to & X \\ f & \mapsto & \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda) \end{array}$$

# On a Hilbert space

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

Fact. On a Hilbert space, a Gaussian sum  $\sum_n g_n x_n$  converges almost surely if and only if  $\sum_n ||x_n||^2 < +\infty$ .

On a Hilbert space,  $\gamma$ -radonifying operators and Hilbert-Schmidt operators coincide!

$$\mathcal{K}_E: L^2(\mathbb{T}, dm) \rightarrow X$$
  
 $f \mapsto \int_{\mathbb{T}} f(\lambda) E(\lambda) dm(\lambda)$ 

It is Hilbert-Schmidt!  $R = K_E K_E^*$  is the covariance operator of some Gaussian measure!

### Theorem on a Hilbert space

#### Theorem (B. Grivaux (2006))

Let X be a separable Hilbert space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvectorfield. Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

# What about Banach spaces?

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges almost surely.

# What about Banach spaces?

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges in  $L^2(\Omega, X)$ .

### What about Banach spaces?

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges in  $L^2(\Omega, X)$ .

#### Definition

A Banach space X is said to have (Gaussian) type  $p \in [1,2]$  if

$$\left\|\sum_{n}g_{n}x_{n}\right\|_{L^{2}(\Omega,X)}\leq C\left(\sum_{n}||x_{n}||^{p}\right)^{\frac{1}{p}}$$

for some finite constant C and every finite sequence  $(x_n) \subset X$ .

# What about Banach spaces?

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges in  $L^2(\Omega, X)$ .

#### Definition

A Banach space X is said to have (Gaussian) type  $p \in [1,2]$  if

$$\left\|\sum_{n}g_{n}x_{n}\right\|_{L^{2}(\Omega,X)}\leq C\left(\sum_{n}||x_{n}||^{p}\right)^{\frac{1}{p}},$$

for some finite constant C and every finite sequence  $(x_n) \subset X$ .

- A Hilbert space has type 2;
- L<sup>p</sup>-spaces have type min(p, 2);
- Any Banach space has type 1;

### What about Banach spaces?

 $K \in \mathfrak{L}(\mathcal{H}, X)$  is  $\gamma$ -radonifying if for some orthonormal basis  $(e_n)$  of  $\mathcal{H}$ , the Gaussian series  $\sum g_n(\omega)K(e_n)$  converges in  $L^2(\Omega, X)$ .

#### Definition

A Banach space X is said to have (Gaussian) type  $p \in [1,2]$  if

$$\left\|\sum_{n}g_{n}x_{n}\right\|_{L^{2}(\Omega,X)}\leq C\left(\sum_{n}||x_{n}||^{p}\right)^{\frac{1}{p}}$$

for some finite constant C and every finite sequence  $(x_n) \subset X$ .

#### Corollary

Let X be a Banach space with type p and let  $K \in \mathfrak{L}(\mathcal{H}, X)$ . Then K is  $\gamma$ -radonifying as soon as  $\sum_{n} ||Ke_{n}||^{p} < +\infty$  for some orthonormal basis  $(e_{n})$  of  $\mathcal{H}$ .

# What about Banach spaces?

#### Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field E. Suppose moreover that :

- X has type p;
- E is  $\alpha$ -Hölderian for some  $\alpha > \frac{1}{p} \frac{1}{2}$ .

Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

### What about Banach spaces?

#### Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field E. Suppose moreover that :

- X has type p;
- E is  $\alpha$ -Hölderian for some  $\alpha > \frac{1}{p} \frac{1}{2}$ .

Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

One has to find an orthonormal basis  $(e_n)$  of  $L^2(\mathbb{T})$  such that  $\sum_n ||Ke_n||^p < +\infty$ .

# What about Banach spaces?

#### Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field E. Suppose moreover that :

- X has type p;
- E is  $\alpha$ -Hölderian for some  $\alpha > \frac{1}{p} \frac{1}{2}$ .

Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

One has to find an orthonormal basis  $(e_n)$  of  $L^2(\mathbb{T})$  such that  $\sum_n ||Ke_n||^p < +\infty$ .

•  $(e_n) = (e^{int})_{n \in \mathbb{Z}}$  (B. Grivaux 2007). The result is less good.

# What about Banach spaces?

#### Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field E. Suppose moreover that :

- X has type p;
- E is  $\alpha$ -Hölderian for some  $\alpha > \frac{1}{p} \frac{1}{2}$ .

Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

One has to find an orthonormal basis  $(e_n)$  of  $L^2(\mathbb{T})$  such that  $\sum_n ||Ke_n||^p < +\infty$ .

- $(e_n) = (e^{int})_{n \in \mathbb{Z}}$  (B. Grivaux 2007). The result is less good.
- $(e_n) =$  the Haar basis of  $L^2(\mathbb{T})$ .

### Banach spaces=Hilbert spaces!

#### Theorem (B. 2011)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field. Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.

### Banach spaces=Hilbert spaces!

#### Theorem (B. 2011)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field. Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.

Strategy. Instead of considering

$$K_E: L^2(\mathbb{T}, dm) \to X,$$

consider

$$K_E: L^2(\mathbb{T}, \sigma) \to X,$$

with  $\sigma$  a continuous measure on  $\mathbb{T}$ .

#### Banach spaces=Hilbert spaces!

#### Theorem (B. 2011)

Let X be a separable Banach space and let  $T \in \mathfrak{L}(X)$  be such that T has a perfectly spanning  $\mathbb{T}$ -eigenvector field. Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.

Strategy. Instead of considering

$$K_E: L^2(\mathbb{T}, dm) \to X,$$

consider

$$K_E: L^2(\mathbb{T}, \sigma) \to X,$$

with  $\sigma$  a continuous measure on  $\mathbb{T}$ .  $\sigma$  will be carried on Cantor set!

### Cantor sets

#### Definition

A subset  ${\mathcal C}$  of  ${\mathbb T}$  is a Cantor set if it is the continuous image of  $\{-1,1\}^{\mathbb N}.$ 

#### Cantor sets

#### Definition

A subset  ${\mathcal C}$  of  ${\mathbb T}$  is a Cantor set if it is the continuous image of  $\{-1,1\}^{\mathbb N}.$ 

 $\{-1,1\}^{\mathbb{N}}$  will be endowed with its Haar measure  $\nu$ .

#### Cantor sets

#### Definition

A subset  ${\mathcal C}$  of  ${\mathbb T}$  is a **Cantor set** if it is the continuous image of  $\{-1,1\}^{\mathbb N}.$ 

 $\{-1,1\}^{\mathbb{N}}$  will be endowed with its Haar measure  $\nu$ .  $\nu$  is the tensor product  $\mathbb{P}_1 \otimes \mathbb{P}_2 \otimes \ldots$ , with, one each coordinate,

 $\mathbb{P}_k(\{-1\}) = 1/2 \text{ and } \mathbb{P}_k(\{1\}) = 1/2.$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# An orthonormal basis of $L^2(\{-1,1\}^{\omega})$ .

Any  $\omega \in \{-1,1\}^{\mathbb{N}}$  can be written

$$\omega = (\varepsilon_1(\omega), \varepsilon_2(\omega), \dots).$$

#### Definition

Let  $A \subset \mathcal{P}_f(\mathbb{N})$ . The **Walsh function**  $w_A$  is defined by

$$w_{\mathcal{A}}(\omega) = \prod_{n \in \mathcal{A}} \varepsilon_n(\omega).$$

# An orthonormal basis of $L^2(\{-1,1\}^{\omega})$ .

Any  $\omega \in \{-1,1\}^{\mathbb{N}}$  can be written

$$\omega = (\varepsilon_1(\omega), \varepsilon_2(\omega), \dots).$$

#### Definition

Let  $A \subset \mathcal{P}_f(\mathbb{N})$ . The **Walsh function**  $w_A$  is defined by

$$w_A(\omega) = \prod_{n \in A} \varepsilon_n(\omega).$$

Theorem  $(w_A)_{A \in \mathcal{P}_f(\mathbb{N})}$  is an orthonormal basis of  $L^2(\{-1,1\}^{\mathbb{N}},\nu)$ .

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

### A new $\gamma$ -radonifying operator

#### Lemma

Let  $\phi : \{-1,1\}^{\mathbb{N}} \to \mathcal{C}$  be an homeomorphism and let  $\sigma$  be the image of the Haar measure  $\nu$  on  $\{-1,1\}^{\mathbb{N}}$  by  $\phi$ . Let  $u : \{-1,1\}^{\mathbb{N}} \to X$  be a continuous function such that, for any  $n \geq 1$ , for any  $(s_1, \ldots, s_{n-1}) \in \{-1,1\}^{n-1}$ , any  $s', s'' \in \{-1,1\}^{\mathbb{N}}$ ,

$$\|u(s_1,\ldots,s_{n-1},1,s')-u(s_1,\ldots,s_{n-1},-1,s'')\| \leq 3^{-n}$$

Let also  $E = u \circ \phi^{-1}$ . Then there exists an orthonormal basis (e<sub>n</sub>) of  $L^2(\mathbb{T}, d\sigma)$  such that the operator  $K_E : L^2(\mathbb{T}, d\sigma) \to X$  satisfies

$$\sum_n \|\mathcal{K}_E(e_n)\| < +\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### What remains to be done

 Prove that, if *T* admits a perfectly spanning T-eigenvector field, then one can construct φ : C → T, u : C → X such that

$$\|u(s_1,\ldots,s_{n-1},1,s')-u(s_1,\ldots,s_{n-1},-1,s'')\|\leq 3^{-n}$$

and u(s) is a  $\mathbb{T}$ -eigenvector with eigenvalue  $\phi(s)$ .

#### What remains to be done

 Prove that, if *T* admits a perfectly spanning T-eigenvector field, then one can construct φ : C → T, u : C → X such that

$$\|u(s_1,\ldots,s_{n-1},1,s')-u(s_1,\ldots,s_{n-1},-1,s'')\|\leq 3^{-n}$$

and u(s) is a T-eigenvector with eigenvalue  $\phi(s)$ .

Prove that everything remains true with K<sub>E</sub> : L<sup>2</sup>(T, dσ) → X instead of K<sub>E</sub> : L<sup>2</sup>(T, dm) → X.

#### What remains to be done

 Prove that, if *T* admits a perfectly spanning T-eigenvector field, then one can construct φ : C → T, u : C → X such that

$$\|u(s_1,\ldots,s_{n-1},1,s')-u(s_1,\ldots,s_{n-1},-1,s'')\|\leq 3^{-n}$$

and u(s) is a T-eigenvector with eigenvalue  $\phi(s)$ .

Prove that everything remains true with K<sub>E</sub> : L<sup>2</sup>(T, dσ) → X instead of K<sub>E</sub> : L<sup>2</sup>(T, dm) → X.

In fact, we will have to consider several such maps instead of one!

### The construction of Cantor sets

#### Lemma

Let  $T \in \mathcal{L}(X)$  with a perfectly spanning  $\mathbb{T}$ -eigenvector field. Let also  $(\varepsilon_n)$  be a sequence of positive real numbers. There exist a sequence  $(C_i)$  of subsets of  $\mathbb{T}$ , a sequence of homeomorphisms  $(\phi_i)$ from  $\{-1,1\}^{\mathbb{N}}$  onto  $\mathcal{C}_i$  and a sequence of continuous functions  $(u_i), u_i : \{-1, 1\}^{\mathbb{N}} \to S_X$  such that, setting  $E_i = u_i \circ \phi_i^{-1}$ , (a) for any  $i \geq 1$  and any  $\lambda \in C_i$ ,  $TE_i(\lambda) = \lambda E_i(\lambda)$ ; (b)  $span(E_i(\lambda); i \ge 1, \lambda \in C_i)$  is dense in X; (c) for any  $n \ge 1$ , any  $(s_1, \ldots, s_{n-1}) \in \{-1, 1\}^{n-1}$ , any  $s', s'' \in \{-1, 1\}^{\mathbb{N}}$ .

$$\|u_i(s_1,\ldots,s_{n-1},1,s')-u_i(s_1,\ldots,s_{n-1},-1,s'')\|\leq \varepsilon_n.$$

#### How to prove this?

Step 1 Since *E* has a perfectly spanning  $\mathbb{T}$ -eigenvector field, there exists a sequence  $(x_i)$  satisfying :

- each x<sub>i</sub> belongs to S<sub>X</sub>, is a T-eigenvector and the corresponding eigenvalues (λ<sub>i</sub>) are all different;
- each  $x_i$  is a limit of a subsequence  $(x_{n_k})_{k\geq 1}$ ;
- $\operatorname{span}(x_i; i \ge 1)$  is dense in X.

#### How to prove this?

Step 1 Since *E* has a perfectly spanning  $\mathbb{T}$ -eigenvector field, there exists a sequence  $(x_i)$  satisfying :

- each x<sub>i</sub> belongs to S<sub>X</sub>, is a T-eigenvector and the corresponding eigenvalues (λ<sub>i</sub>) are all different;
- each  $x_i$  is a limit of a subsequence  $(x_{n_k})_{k\geq 1}$ ;
- $\operatorname{span}(x_i; i \ge 1)$  is dense in X.

Step 2 The construction...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Proof of the main result

We apply the previous lemma with  $\varepsilon_n = 3^{-n}$ . We get  $C_i$ ,  $u_i$ ,  $E_i$ ,  $\sigma_i$  and an orthonormal basis of  $L^2(\mathbb{T}, d\sigma_i)$  such that

$$\sum_n \| \mathcal{K}_{\mathcal{E}_i}(e_{n,i}) \| < +\infty.$$

# Proof of the main result

We apply the previous lemma with  $\varepsilon_n = 3^{-n}$ . We get  $C_i$ ,  $u_i$ ,  $E_i$ ,  $\sigma_i$  and an orthonormal basis of  $L^2(\mathbb{T}, d\sigma_i)$  such that

$$\sum_n \| \mathcal{K}_{\mathcal{E}_i}(e_{n,i}) \| < +\infty.$$

We set  $\mathcal{H} = \bigoplus_{i \ge 1} L^2(\mathbb{T}, d\sigma_i)$  and let  $K : \mathcal{H} \to X$  be defined by

$$\mathcal{K}(\oplus_i f_i) = \sum_i \alpha_i \mathcal{K}_{\mathcal{E}_i}(f_i)$$

where  $(\alpha_i)$  satisfies (a)  $\sum_i \alpha_i^2 \|E_i\|_{L^2(\mathbb{T},\sigma_i,X)}^2 < +\infty$ 

# Proof of the main result

We apply the previous lemma with  $\varepsilon_n = 3^{-n}$ . We get  $C_i$ ,  $u_i$ ,  $E_i$ ,  $\sigma_i$  and an orthonormal basis of  $L^2(\mathbb{T}, d\sigma_i)$  such that

$$\sum_n \| \mathcal{K}_{\mathcal{E}_i}(e_{n,i}) \| < +\infty.$$

We set  $\mathcal{H} = \bigoplus_{i \ge 1} L^2(\mathbb{T}, d\sigma_i)$  and let  $K : \mathcal{H} \to X$  be defined by

$$\mathcal{K}(\oplus_i f_i) = \sum_i \alpha_i \mathcal{K}_{\mathcal{E}_i}(f_i)$$

where  $(\alpha_i)$  satisfies (a)  $\sum_i \alpha_i^2 ||E_i||_{L^2(\mathbb{T},\sigma_i,X)}^2 < +\infty$ , so that K is well-defined;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

# Proof of the main result

We apply the previous lemma with  $\varepsilon_n = 3^{-n}$ . We get  $C_i$ ,  $u_i$ ,  $E_i$ ,  $\sigma_i$  and an orthonormal basis of  $L^2(\mathbb{T}, d\sigma_i)$  such that

$$\sum_n \| \mathcal{K}_{\mathcal{E}_i}(e_{n,i}) \| < +\infty.$$

We set  $\mathcal{H} = \bigoplus_{i \ge 1} L^2(\mathbb{T}, d\sigma_i)$  and let  $K : \mathcal{H} \to X$  be defined by

$$\mathcal{K}(\oplus_i f_i) = \sum_i \alpha_i \mathcal{K}_{\mathcal{E}_i}(f_i)$$

where  $(\alpha_i)$  satisfies (a)  $\sum_i \alpha_i^2 ||E_i||^2_{L^2(\mathbb{T},\sigma_i,X)} < +\infty$ , so that K is well-defined; (b)  $\sum_i \alpha_i \sum_n ||K_{E_i}(e_{n,i})||_X < +\infty$ 

# Proof of the main result

We apply the previous lemma with  $\varepsilon_n = 3^{-n}$ . We get  $C_i$ ,  $u_i$ ,  $E_i$ ,  $\sigma_i$  and an orthonormal basis of  $L^2(\mathbb{T}, d\sigma_i)$  such that

$$\sum_n \| \mathcal{K}_{\mathcal{E}_i}(e_{n,i}) \| < +\infty.$$

We set  $\mathcal{H} = \bigoplus_{i \ge 1} L^2(\mathbb{T}, d\sigma_i)$  and let  $K : \mathcal{H} \to X$  be defined by

$$\mathcal{K}(\oplus_i f_i) = \sum_i \alpha_i \mathcal{K}_{\mathcal{E}_i}(f_i)$$

where  $(\alpha_i)$  satisfies (a)  $\sum_i \alpha_i^2 ||E_i||_{L^2(\mathbb{T},\sigma_i,X)}^2 < +\infty$ , so that K is well-defined; (b)  $\sum_i \alpha_i \sum_n ||K_{E_i}(e_{n,i})||_X < +\infty$ , so that K is  $\gamma$ -radonifying.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

# Proof of the main result

We apply the previous lemma with  $\varepsilon_n = 3^{-n}$ . We get  $C_i$ ,  $u_i$ ,  $E_i$ ,  $\sigma_i$  and an orthonormal basis of  $L^2(\mathbb{T}, d\sigma_i)$  such that

$$\sum_n \| \mathcal{K}_{\mathcal{E}_i}(e_{n,i}) \| < +\infty.$$

We set  $\mathcal{H} = \bigoplus_{i \ge 1} L^2(\mathbb{T}, d\sigma_i)$  and let  $K : \mathcal{H} \to X$  be defined by

$$\mathcal{K}(\oplus_i f_i) = \sum_i \alpha_i \mathcal{K}_{\mathcal{E}_i}(f_i)$$

where  $(\alpha_i)$  satisfies (a)  $\sum_i \alpha_i^2 \|E_i\|_{L^2(\mathbb{T},\sigma_i,X)}^2 < +\infty$ , so that K is well-defined; (b)  $\sum_i \alpha_i \sum_n \|K_{E_i}(e_{n,i})\|_X < +\infty$ , so that K is  $\gamma$ -radonifying. Everything works with  $R = KK^*$ .

#### The correct statement

In fact, we have obtained the following statement:

#### Theorem

Let  $T \in \mathfrak{L}(X)$  be such that, for any  $D \subset \mathbb{T}$  countable, ker $(T - \lambda I; \lambda \in \mathbb{T} \setminus D)$  is a dense subset of X. Then there exists a Gaussian measure  $\mu$  on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Example - backward weighted shifts

Let  $B_{\mathbf{w}}$  be the weighted backward shift on  $\ell^{p}(\mathbb{N})$  with weight sequence  $(w_{n})$ :

$$B_{\mathbf{w}}(x_0, x_1, \dots) = (w_1 x_1, w_2 x_2, w_3 x_3, \dots).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Example - backward weighted shifts

Let  $B_{\mathbf{w}}$  be the weighted backward shift on  $\ell^{p}(\mathbb{N})$  with weight sequence  $(w_{n})$ :

$$B_{\mathbf{w}}(x_0, x_1, \dots) = (w_1 x_1, w_2 x_2, w_3 x_3, \dots).$$

Suppose that

$$\sum_{n\geq 1}\frac{1}{(w_1\cdots w_n)^p}<\infty\,.$$

### Example - backward weighted shifts

Let  $B_{\mathbf{w}}$  be the **weighted backward shift** on  $\ell^{p}(\mathbb{N})$  with weight sequence  $(w_{n})$ :

$$B_{\mathbf{w}}(x_0, x_1, \dots) = (w_1 x_1, w_2 x_2, w_3 x_3, \dots).$$

Suppose that

$$\sum_{n\geq 1}\frac{1}{(w_1\cdots w_n)^p}<\infty\,.$$

There exists a Gaussian measure  $\mu$  on  $\ell^{p}(\mathbb{N})$  with full support, with respect to which  $B_{\mathbf{w}}$  is a measure-preserving and weakly mixing transformation.

### Example - backward weighted shifts

The condition

$$\sum_{n\geq 1}\frac{1}{(w_1\cdots w_n)^p}<\infty\,.$$

ensures that  $B_{\mathbf{w}}$  admit  $\mathbb{T}$ -eigenvectors:

$$E(\lambda) := \sum_{n \ge 0} \frac{\lambda^n}{w_1 \cdots w_n} e_n.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### Example - backward weighted shifts

The condition

$$\sum_{n\geq 1}\frac{1}{(w_1\cdots w_n)^p}<\infty\,.$$

ensures that  $B_{\mathbf{w}}$  admit  $\mathbb{T}$ -eigenvectors:

$$E(\lambda) := \sum_{n\geq 0} \frac{\lambda^n}{w_1\cdots w_n} e_n.$$

This eigenvector field is perfectly spanning.

### Example - backward weighted shifts

$$E(\lambda) := \sum_{n\geq 0} \frac{\lambda^n}{w_1\cdots w_n} e_n.$$

is perfectly spanning.

#### Example - backward weighted shifts

$$E(\lambda) := \sum_{n\geq 0} \frac{\lambda^n}{w_1\cdots w_n} e_n.$$

is perfectly spanning. Pick  $y \in \ell^q$  such that

$$\langle y, E(\lambda) \rangle = 0$$
 a.e..

Then

$$g(\lambda) = \sum_{n} \frac{y_n}{w_1 \dots w_n} \lambda^n = 0$$
 a.e..

#### Example - backward weighted shifts

$$E(\lambda) := \sum_{n\geq 0} \frac{\lambda^n}{w_1\cdots w_n} e_n.$$

is perfectly spanning. Pick  $y \in \ell^q$  such that

$$\langle y, E(\lambda) \rangle = 0$$
 a.e..

Then

$$g(\lambda) = \sum_{n} \frac{y_n}{w_1 \dots w_n} \lambda^n = 0 \text{ a.e.}$$
  
 $\implies \hat{g}(n) = 0 \text{ for all } n \in \mathbb{N}.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Example - Adjoints of multipliers

#### Definition

For  $\phi \in H^{\infty}(\mathbb{D})$ , the multiplier  $M_{\phi}$  is defined by  $M_{\phi}(f) = \phi f$ ,  $f \in H^{2}(\mathbb{D})$ .

#### Theorem

If  $\phi$  is non-constant and  $\phi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$ , then there exists a Gaussian measure with full support on  $H^2(\mathbb{D})$  with respect to which  $M_{\phi}^*$  is a measure-preserving and weakly mixing transformation.

### Adjoints of multipliers

Let  $k_z$  be the **reproducing kernel** at  $z \in \mathbb{D}$ :

$$orall f \in H^2(\mathbb{D}) \ : \ f(z) = \langle f, k_z 
angle_{H^2}.$$

### Adjoints of multipliers

Let  $k_z$  be the **reproducing kernel** at  $z \in \mathbb{D}$ :

$$orall f\in H^2(\mathbb{D})\ :\ f(z)=\langle f,k_z
angle_{H^2}\,.$$

 $k_z$  is an eigenvector for  $M_{\phi}^*$ .

$$\langle f, M_{\phi}^*(k_z) \rangle_{H^2} = \langle \phi f, k_z \rangle_{H^2} = \phi(z)f(z) = \langle f, \overline{\phi(z)}k_z \rangle_{H^2}.$$

### Adjoints of multipliers

Let  $k_z$  be the **reproducing kernel** at  $z \in \mathbb{D}$ :

$$orall f\in H^2(\mathbb{D}) \ : \ f(z)=\langle f,k_z
angle_{H^2}\,.$$

 $k_z$  is an eigenvector for  $M_{\phi}^*$ .

$$\langle f, M_{\phi}^*(k_z) \rangle_{H^2} = \langle \phi f, k_z \rangle_{H^2} = \phi(z) f(z) = \langle f, \overline{\phi(z)} k_z \rangle_{H^2}.$$

When  $\phi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$ , one can find an open arc  $I \subset \mathbb{T}$  and a curve  $\Gamma \subset \mathbb{D}$  such that  $\phi(\Gamma) = I$ .

### Adjoints of multipliers

Let  $k_z$  be the **reproducing kernel** at  $z \in \mathbb{D}$ :

$$orall f\in H^2(\mathbb{D}) \ : \ f(z)=\langle f,k_z
angle_{H^2}\,.$$

 $k_z$  is an eigenvector for  $M_{\phi}^*$ .

$$\langle f, M_{\phi}^*(k_z) \rangle_{H^2} = \langle \phi f, k_z \rangle_{H^2} = \phi(z)f(z) = \langle f, \overline{\phi(z)}k_z \rangle_{H^2}.$$

When  $\phi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$ , one can find an open arc  $I \subset \mathbb{T}$  and a curve  $\Gamma \subset \mathbb{D}$  such that  $\phi(\Gamma) = I$ .

$$E(e^{i\theta}) := \mathbf{1}_{I}(e^{i\theta})k_{\phi^{-1}(e^{i\theta})}.$$

is a (conjugate) T-eigenvector field.

How to find an ergodic measure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Adjoints of multipliers

$$\mathsf{E}(e^{i heta}) := \mathbf{1}_{\mathsf{I}}(e^{i heta}) \mathsf{k}_{\phi^{-1}(e^{i heta})}.$$

is perfectly spanning.

### Adjoints of multipliers

$$E(e^{i\theta}) := \mathbf{1}_I(e^{i\theta})k_{\phi^{-1}(e^{i\theta})}.$$

is perfectly spanning. Pick  $f \in H^2(\mathbb{D})$  such that

$$\langle f, E(e^{i\theta}) \rangle = 0$$
 a.e.

### Adjoints of multipliers

$$E(e^{i\theta}) := \mathbf{1}_I(e^{i\theta})k_{\phi^{-1}(e^{i\theta})}.$$

is perfectly spanning. Pick  $f \in H^2(\mathbb{D})$  such that

$$\langle f, E(e^{i\theta}) \rangle = 0$$
 a.e.

$$f(z) = 0$$
 a.e. on  $\Gamma$ .

### Adjoints of multipliers

$$E(e^{i\theta}) := \mathbf{1}_I(e^{i\theta})k_{\phi^{-1}(e^{i\theta})}.$$

is perfectly spanning. Pick  $f \in H^2(\mathbb{D})$  such that

$$\langle f, E(e^{i\theta})\rangle = 0 \text{ a.e.}$$

$$f(z) = 0$$
 a.e. on  $\Gamma$ .

 $f \equiv 0.$ 



### And so on...

- Many other examples (composition operators,...);
- Many other results (about the converse, on semigroups of operators,...)

# Muchas gracias!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで