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Basic setting

1 X always compact metric space

2 if additionally connected then we say that X is a continuum

3 #X > 1 - nondegenerate

4 f : X → X , always continuous

5 C (X ) - set of all such maps f

6 (X , f ) - a dynamical system

7 I = [0, 1]

8 G - a topological graph

9 inverse limit - X = lim←−{f ,X} = {(x0, x1, . . .) : xi ∈ X , f (xi+1) = xi}
10 shift homeo. - σf (x0, x1, . . .) = (f (x0), x0, x1, . . .)

Piotr Oprocha (AGH) Entropy, inverse limits and attractors UPV, Spain 2 / 17



Indecomposable arc-like continua

1 continuum C is arc-like if for every ε > 0 there is an ε-map π : C → I

(i.e. diamπ−1(x) < ε for every x ∈ I ).

2 continuum C is indecomposable if is not the union of two proper

subcontinua.

3 hereditarily indecomposable if all nondegenerate subcontinua are

indecomposable.

4 arc-like hereditarily indecomposable continuum is topologically unique

- we call it the pseudoarc (Knaster; Moise; Bing).
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Inverse limits and attractors

Theorem (Barge & Martin)

Every continuum X = lim←−{f , [0, 1]}, can be embedded into a disk D in

such a way that

(i) X is an attractor of a homeomorphism h : D → D,

(ii) h|X = σf ; i.e. h restricted to X agrees with the shift homeomorphism

induced by f , and

(iii) h is the identity on the boundary of D.

Remark

It was pointed by Barge & Roe that the same is true if f is a degree ±1
circle map and h is an annulus homeomorphism.
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Pseudoarc

1 If f ∈ C (I ) has some special properties, then X is a pseudoarc.

2 Then we can study dynamical properties of the homeomorphism σf in

terms of f .

3 Example of G. Henderson (Duke Math. J., 1964):
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Method of Minc and Transue

1 We say that f ∈ C (I ) is δ-crooked between a and b if,

for every two points c, d ∈ I such that f (c) = a and f (d) = b,
there is a point c ′ between c and d and there is a point d ′ between c ′

and d
such that |b − f (c ′)| < δ and |a− f (d ′)| < δ.

2 We say that f is δ-crooked if it is δ-crooked between every pair of

points.

Theorem

Let f ∈ C (I ) be a map with the property that,

for every δ > 0 there is an integer n > 0

such that f n is δ-crooked.

Then X is the pseudoarc.

P. Minc and W. R. R. Transue, A transitive map on [0, 1] whose inverse limit is the pseudoarc, Proc. Amer. Math.

Soc. 111 (1991), 1165�1170.
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Circle-like maps

1 We say that ω : I → G is δ-crooked if,

there are points 0 ≤ c ′ < d ′ ≤ 1
such that d(ω(1), ω(c ′)) < δ and d(ω(0), ω(d ′)) < δ.

2 We say that f is δ-crooked if every ω : I → G is δ-crooked.

Theorem

Let f ∈ C (G ) be a map with the property that,

for every δ > 0 there is an integer n > 0

such that f n is δ-crooked.

Then X is the hereditarily indecomposable.

Kawamura, K.; Tuncali, H. M.; Tymchatyn, E. D. Hereditarily indecomposable inverse limits of graphs. Fund. Math.

185 (2005), no. 3, 195�210.
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Crookedness and dynamics

Map f ∈ C (X ) is exact if for every open U there is n > 0 such that

f n(U) = X .

Using approximation technique of Minc-Transue it is possible to
generate:

1 (Minc & Transue) (topologically) mixing map of the pseudo-arc
2 (Kawamura, Tuncali & Tymchatyn) mixing map of the pseudo-circle

(or other continua from inverse limits)

Every example of this kind, when transitive is automatically mixing

(because of terminal periodic decomposition for transitive maps).

htop(f ) = htop(σf ) so all these examples have positive topological
entropy

3 (Ko±cielniak, O. & Tuncali) On pseudo-arc it is possible that σf is
mixing but not exact, on pseudo-circle it is always exact when mixing.

4 (O. & Drwi¦ga) Such example on pseudo-arc exists (i.e. mixing but not
exact)
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An old question

Question (Barge, 1989?)

Is every real number the entropy of some homeomorphism on the

pseudo-arc?

Theorem (Mouron, 2012)

If f ∈ C (I ) is such that the inverse limit X is the pseudoarc then

htop(f ) ∈ {0,∞}.

The answer to Barge's question is still unknown.

With Example of Henderson + Minc and Transue technique we see

that both cases 0, ∞ can be obtained in practice.
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Work in progress (with J. Boro«ski)

We can prove the following (with other methodology than Mouron).

Theorem

If f ∈ C (G ) is such that the inverse limit X is the hereditarily

indecomposable then htop(f ) ∈ {0,∞}.

it is known that there is a homeomorphism of the pseudo-circle with

zero entropy - example of M. Handel from 1982 - even a global

attractor and minimal set for plane homeomorphism

but can zero entropy shift homeomorphism σf of the pseudo-circle be

constructed?

Theorem (still not all details su�ciently veri�ed...)

If f ∈ C (G ) is such that the inverse limit X is the hereditarily

indecomposable and htop(f ) > 0 then there exists a closed entropy set

A ⊂ [0, 1] such that htop(A) =∞.
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Chaos in the sense of Li and Yorke

1 (x , y) is Li-Yorke pair if is proximal but not asymptotic, i.e.

lim infn→∞ d(f n(x), f n(y)) = 0,
lim supn→∞ d(f n(x), f n(y)) > 0.

2 S - scrambled, if every x , y ∈ S , x 6= y is Li-Yorke pair.

3 f - Li-Yorke chaotic if there exists uncountable scrambled set.

4 For f ∈ C (I ) we have Li-Yorke chaos:

when entropy of f is positive, or equivalently there is a point of odd
period,
when entropy is zero, for some (but not all) maps of type 2∞, i.e.
maps with points of period 2n for every n.

5 map of type 2n (in particular, homeomorphism of I ) cannot be chaotic.

Piotr Oprocha (AGH) Entropy, inverse limits and attractors UPV, Spain 11 / 17



Chaos in the sense of Li and Yorke

1 (x , y) is Li-Yorke pair if is proximal but not asymptotic, i.e.

lim infn→∞ d(f n(x), f n(y)) = 0,
lim supn→∞ d(f n(x), f n(y)) > 0.

2 S - scrambled, if every x , y ∈ S , x 6= y is Li-Yorke pair.

3 f - Li-Yorke chaotic if there exists uncountable scrambled set.

4 For f ∈ C (I ) we have Li-Yorke chaos:

when entropy of f is positive, or equivalently there is a point of odd
period,
when entropy is zero, for some (but not all) maps of type 2∞, i.e.
maps with points of period 2n for every n.

5 map of type 2n (in particular, homeomorphism of I ) cannot be chaotic.

Piotr Oprocha (AGH) Entropy, inverse limits and attractors UPV, Spain 11 / 17



Decomposable continua

1 A continuum is decomposable if it can be written as the union of two

proper subcontinua.

2 It is hereditarily decomposable if every subcontinuum is decomposable.
3 It was recently proved that positive entropy implies Li-Yorke chaos,

but

NO hereditarily decomposable arc-like continuum admits
homeomorphisms with positive entropy (Mouron),
homeomorphisms of arc-like hereditarily decomposable continua admit
only 2n-periodic orbits (Ye, Ingram).

Question

Is there an arc-like hereditarily decomposable continuum X admitting a

Li-Yorke chaotic homeomorphism?
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Search for an example - �rst approximation

1 Graph of f and f 2

2 Map f is of type 2∞. Its ω-limit sets are either periodic points or an

odometer (the unique in�nite ω-limit set).

Theorem

Inverse limit X = lim←−{f , [0, 1]} is hereditarily decomposable continuum.
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Search for an example - �nal step

1 Blow up properly selected orbit of f to introduce Li-Yorke pair (in new

map g), but without introducing indecomposable subcontinuum into

inverse limit (of g).
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Search for an example - �nal step

1 For our "Denjoy-type" construction we select a point in the in�nite

ω-limit set (odometer) whose preimages do not contain turning point.
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Final remark

1 Our example is Suslinean (any family of pairwise disjoint and

nondegenerate subcontinua is countable).

2 Embedding other "wandering" subcontinuum can make it non

Suslinean.
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Related problems

There exists an arc-like hereditarily decomposable continuum that contains

no arc (Nadler's book Continuum theory. An introduction, 1992)

Question 1

Is there a hereditarily decomposable arc-like continuum X which contains

no arc, admitting a Li-Yorke chaotic homeomorphism?

Question 2

Is there a Li-Yorke chaotic zero entropy homeomorphism of the pseudoarc?

The answer to Q2, if positive, cannot be obtained by inverse limit

construction with one map. If a map f ∈ C (I ) has a periodic point of

period 2 or larger, and Xϕ is the pseudoarc, then it has a periodic point of

odd period other than one (Block, Keesling, Uspenskij, 2000).

Piotr Oprocha (AGH) Entropy, inverse limits and attractors UPV, Spain 17 / 17


