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The Daugavet equation

Proposition (I. Daugavet 1963)
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Each compact linear operator T: C[0, 1] — CJ0, 1] satisfies

IId+T|[=1+|T].
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The Daugavet equation
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Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0, 1] — CJ0, 1] satisfies

Md+Tll=1+|TIl.

For which Banach spaces is this proposition true?
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The Daugavet equation

Proposition (I. Daugavet 1963)
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Each compact linear operator T: C[0, 1] — CJ0, 1] satisfies

Md+Tll=1+|TIl.

For which Banach spaces is this proposition true?

C[0, 1], L1]0, 1], Lo [0, 1], A(D), H®, Lip(K) (K c RY convex), type Il von
Neumann algebras and their preduals, ...
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The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0, 1] — CJ[0, 1] satisfies

Md+Tll=1+|TIl.

For which Banach spaces is this proposition true?

C[0, 1], L1]0, 1], L [0, 1], A(D), H*®, Lip(K) (K c R? convex), type Il von
Neumann algebras and their preduals, ...

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(u) and Leo(u) for a non-atomic measure p.
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The Daugavet equation »»«m»

Proposition (I. Daugavet 1963)
Each compact linear operator T: C[0, 1] — CJ[0, 1] satisfies

Md+Tll=1+|TIl.

For which Banach spaces is this proposition true?

C[0, 1], L1]0, 1], L [0, 1], A(D), H*®, Lip(K) (K c R? convex), type Il von
Neumann algebras and their preduals, ...

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(u) and Leo(u) for a non-atomic measure p.

co, 11, Lo, Lp(u) for 1 < p < oo, Lip(K) (K RY compact and not convex),
type | von Neumann algebras and their preduals, ...
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The Daugavet property
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A Banach space X has the Daugavet property if

d+ Tl =1+Tll
for all operators T: X — X of the form T(x) = x (x) Xo
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d+ Tl =1+Tll
for all operators T: X — X of the form T(x) = x (x) Xo
Note: W.l.o.g. ||IT|| = 1.
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The Daugavet property

A Banach space X has the Daugavet property if

d+ Tl =1+Tll

for all operators T: X — X of the form T(x) = x[ (x) Xo.

Note: W.l.o.g. ||IT|| = 1.

Lemma

The following are equivalent:
@ X has the Daugavet property.
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The Daugavet property

A Banach space X has the Daugavet property if

d+ Tl =1+Tll

for all operators T: X — X of the form T(x) = x[ (x) Xo.

Note: W.l.o.g. ||IT|| = 1.

Lemma

The following are equivalent:
@ X has the Daugavet property.

@ For all ||xo|l =1, € > 0 and all slices S of the unit ball Bx there exists
some z € S such that

lz—xoll =22 —¢.
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The Daugavet property

A Banach space X has the Daugavet property if

lld+ Tl =1+Tll

for all operators T: X — X of the form T(x) = x[ (x) Xo.

Note: W.l.o.g. ||IT|| = 1.

Lemma

The following are equivalent:
@ X has the Daugavet property.

@ For all ||xo|l =1, € > 0 and all slices S of the unit ball Bx there exists
some z € S such that

lz—xoll =22 —¢.

@ Forall ||xo|l =1 and &€ > 0, the convex hull of {z € Bx: ||[z—xo| =2 —¢£}
is dense in By.
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Weak compactness

Proposition

If X has the Daugavet property, then ||Ild +T|| =1 + ||T|| for all weakly
compact operators T.

T is weakly compact if the closure of T(Bx) is weakly compact, i.e.,
compact for the weak topology.
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Weak compactness

Proposition

If X has the Daugavet property, then ||Ild +T|| =1 + ||T|| for all weakly
compact operators T.

T is weakly compact if the closure of T(Bx) is weakly compact, i.e.,
compact for the weak topology.

Proposition

If X has the Daugavet property, then every slice of the unit ball has
diameter 2.
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Weak compactness

Proposition

If X has the Daugavet property, then ||Ild +T|| =1 + ||T|| for all weakly
compact operators T.

T is weakly compact if the closure of T(Bx) is weakly compact, i.e.,
compact for the weak topology.

Proposition

If X has the Daugavet property, then every slice of the unit ball has
diameter 2. In particular, X is not reflexive.
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Freie Universita 1 Berlin

Weak compactness

Proposition

If X has the Daugavet property, then ||Ild +T|| =1 + ||T|| for all weakly
compact operators T.

T is weakly compact if the closure of T(Bx) is weakly compact, i.e.,
compact for the weak topology.

Proposition

If X has the Daugavet property, then every slice of the unit ball has
diameter 2. In particular, X is not reflexive.

Proposition

If X has the Daugavet property, then ||Ild + T|| = 1 + ||T|| for all strong
Radon-Nikodym operators T.

T is a strong Radon-Nikodym operator if the closure of T(Bx) has the
Radon-Nikodym property.
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/1-subspaces

Proposition
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If X has the Daugavet property, then X contains a copy of £3.
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/1-subspaces

Proposition
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If X has the Daugavet property, then X contains a copy of £3.

In C[O, 2m], the functions t — sin(2"t) span a copy of /3.
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/1-subspaces

Proposition
If X has the Daugavet property, then X contains a copy of £3.

In C[O, 2m], the functions t — sin(2"t) span a copy of /3.

Theorem

If X has the Daugavet property, then ||Id +T|| = 1 + ||T|| for all £1-singular
operators T.

T is called £3-singular if no restriction of T to any copy of {3 is an (into-)
isomorphism, i.e., bounded below.
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Unconditional bases
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series x = Y,,° | Qkex.

A Schauder basis of a Banach space X is a sequence €1, ez,
that every element x € X can uniquely be represented by an infinite

. in X so
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Freie Universitat ¢
Unconditional bases

A Schauder basis of a Banach space X is a sequence €1, ez,

... inXso
that every element x € X can uniquely be represented by an infinite
series x = Z 1 Ok€k-

If these representlng series converge unconditionally, (en) is said to be an
unconditional Schauder basis.
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Freie Universitat

Unconditional bases

A Schauder basis of a Banach space X is a sequence ej,€3,... in X so
that every element x € X can uniquely be represented by an infinite
series x = Y,,° | Qkex.

If these representing series converge unconditionally, (ep) is said to be an
unconditional Schauder basis.

v

Orthonormal bases in Hilbert spaces, the canonical basis of £, the Haar
system in Lp[0, 1] for p > 1.
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Unconditional bases

A Schauder basis of a Banach space X is a sequence ej,€3,... in X so
that every element x € X can uniquely be represented by an infinite
series x = Y,,° | Qkex.

If these representing series converge unconditionally, (ep) is said to be an
unconditional Schauder basis.

v

Orthonormal bases in Hilbert spaces, the canonical basis of £, the Haar
system in Lp[0, 1] for p > 1. Neither C[0, 1] nor L1[0, 1] have an
unconditional basis.
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Unconditional bases

Definition

A Schauder basis of a Banach space X is a sequence ej,€3,... in X so
that every element x € X can uniquely be represented by an infinite
series x = Y,,° | Qkex.

If these representing series converge unconditionally, (ep) is said to be an
unconditional Schauder basis.

v

Orthonormal bases in Hilbert spaces, the canonical basis of £, the Haar
system in Lp[0, 1] for p > 1. Neither C[0, 1] nor L1[0, 1] have an
unconditional basis.

Theorem

| A\

A separable Banach space with the Daugavet property fails to have an
unconditional basis.
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Unconditional bases

A Schauder basis of a Banach space X is a sequence ej, €3, ... in X so
that every element x € X can uniquely be represented by an infinite
series x = Y,,° | Qkex.

If these representing series converge unconditionally, (ep) is said to be an
unconditional Schauder basis.

v

Orthonormal bases in Hilbert spaces, the canonical basis of £, the Haar
system in Lp[0, 1] for p > 1. Neither C[0, 1] nor L1[0, 1] have an
unconditional basis.

Theorem

| A\

A separable Banach space with the Daugavet property fails to have an
unconditional basis.

Even more, a separable Banach space with the Daugavet property does
not even embed into a space with an unconditional basis.
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Narrow operators
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A linear operator T: X — W is called narrow if for all [|[xo]| =1, € > 0, all
lz—xoll 22 —¢,

slices S of the unit ball Bx and all yg € S there exists some z € S such that

ITz = Tyoll < .
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Narrow operators

Freie Universita | Berlin
A linear operator T: X — W is called narrow if for all [|[xo]| =1, € > 0, all
slices S of the unit ball Bx and all yg € S there exists some z € S such that

Iz—xoll =22 -¢,

Lemma

ITz = Tyoll < .

@ X has the Daugavet property if and only if T = 0 is narrow.
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Narrow operators

Freie Universita | Berlin
A linear operator T: X — W is called narrow if for all [|[xo]| =1, € > 0, all
slices S of the unit ball Bx and all yg € S there exists some z € S such that

Iz—xoll =22 -¢,

Lemma

ITz = Tyoll < .

@ X has the Daugavet property if and only if T = 0 is narrow.
@ Every narrow operator satisfies |[Id +T|| =1+ ||T]|.
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Narrow operators

Definition

Freie Universit: Berlin
A linear operator T: X — W is called narrow if for all [|[xo]| =1, € > 0, all
slices S of the unit ball Bx and all yg € S there exists some z € S such that

lz—xoll =2 —¢,
Lemma

ITz = Tyoll < .

@ X has the Daugavet property if and only if T = 0 is narrow.
@ Every narrow operator satisfies |[Id +T|| =1+ ||T]|.
Theorem

If T is weakly compact (or more generally a strong Radon-Nikodym
operator) or if T is £1-singular, then T is narrow.
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Freie Universitat 8
Narrow operators

A linear operator T: X — W is called narrow if for all [|[xo]| =1, € > 0, all
slices S of the unit ball Bx and all yg € S there exists some z € S such that

Iz—xoll =22 -¢, ITz = Tyoll < e.

Lemma

@ X has the Daugavet property if and only if T = 0 is narrow.
@ Every narrow operator satisfies |[Id +T|| =1+ ||T]|.

If T is weakly compact (or more generally a strong Radon-Nikodym
operator) or if T is £1-singular, then T is narrow.

Indeed, for these T the sum T + S is narrow whenever S is narrow
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Freie Universitat ol |
Narrow operators

Definition

A linear operator T: X — W is called narrow if for all [|[xo]| =1, € > 0, all
slices S of the unit ball Bx and all yg € S there exists some z € S such that

Iz—xoll =22 -¢, ITz = Tyoll < e.

Lemma

@ X has the Daugavet property if and only if T = 0 is narrow.
@ Every narrow operator satisfies |[Id +T|| =1+ ||T]|.

If T is weakly compact (or more generally a strong Radon-Nikodym
operator) or if T is £1-singular, then T is narrow.

Indeed, for these T the sum T + S is narrow whenever S is narrow
(although in general the set of narrow operators is not a vector space).
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Rich subspaces

Freie Universita

| Berlin

A closed subspace U of a Banach space X with the Daugavet property is
called rich if the quotient mapping g: X — X/U is narrow.
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Rich subspaces
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A closed subspace U of a Banach space X with the Daugavet property is
called rich if the quotient mapping g: X — X/U is narrow.

In C(K) all subalgebras are rich.
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Freie Universita 1 Berlin

Rich subspaces

A closed subspace U of a Banach space X with the Daugavet property is
called rich if the quotient mapping g: X — X/U is narrow.

In C(K) all subalgebras are rich.

Proposition

Suppose U is a closed subspace of a Banach space X with the Daugavet
property.

@ If U is rich, then U has the Daugavet property as well.
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Rich subspaces

A closed subspace U of a Banach space X with the Daugavet property is
called rich if the quotient mapping g: X — X/U is narrow.

In C(K) all subalgebras are rich.

Proposition

Suppose U is a closed subspace of a Banach space X with the Daugavet
property.
@ If U is rich, then U has the Daugavet property as well.

@ If X/U is reflexive (or just has the RNP), then U is rich. In particular,
finite-codimensional subspaces are rich.
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Rich subspaces

A closed subspace U of a Banach space X with the Daugavet property is
called rich if the quotient mapping g: X — X/U is narrow.

In C(K) all subalgebras are rich.

Proposition

| A\

Suppose U is a closed subspace of a Banach space X with the Daugavet
property.

@ If U is rich, then U has the Daugavet property as well.

@ If X/U is reflexive (or just has the RNP), then U is rich. In particular,
finite-codimensional subspaces are rich.

@ If (X/U)* is separable, then U is rich.
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Two questions of A. Petczynski

Freie Universitdt

There is a Banach space X with the Daugavet property that fails to

contain a copy of L1[0, 1]. Indeed, X can be chosen to be of the form
L1[0, 1)/(U1 ®1 U2 @1 ---) with each U, isomorphic to £7.
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Freie Universit

Two questions of A. Petczynski

There is a Banach space X with the Daugavet property that fails to
contain a copy of L1[0, 1]. Indeed, X can be chosen to be of the form
L1[0, 1)/(U1 ®1 U2 @1 ---) with each U, isomorphic to £7.

Question 1: Does there exist a space with the Daugavet property that has

the Schur property (i.e., weakly convergent sequences are norm
convergent)?

=) <
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Two questions of A. Petczynski

There is a Banach space X with the Daugavet property that fails to
contain a copy of L1[0, 1]. Indeed, X can be chosen to be of the form
L1[0, 1]/(U1 &1 U2 @1 ---) with each U isomorphic to £7.

Question 1: Does there exist a space with the Daugavet property that has

the Schur property (i.e., weakly convergent sequences are norm
convergent)?

Yes.
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Freie Universita o Berlin

Two questions of A. Petczynski

There is a Banach space X with the Daugavet property that fails to
contain a copy of L1[0, 1]. Indeed, X can be chosen to be of the form
L1]0, 1]/(U1 ®1 U2 &1 - -+ ) with each Up isomorphic to £;.

Question 1: Does there exist a space with the Daugavet property that has

the Schur property (i.e., weakly convergent sequences are norm
convergent)?

Yes.

Proposition

If X has the Daugavet property and U c X is reflexive, then X/U has the
Daugavet property.
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Freie Universita o Berlin

Two questions of A. Petczynski

There is a Banach space X with the Daugavet property that fails to
contain a copy of L1[0, 1]. Indeed, X can be chosen to be of the form
L1]0, 1]/(U1 ®1 U2 &1 - -+ ) with each Up isomorphic to £;.

Question 1: Does there exist a space with the Daugavet property that has

the Schur property (i.e., weakly convergent sequences are norm
convergent)?

Yes.

Proposition

If X has the Daugavet property and U c X is reflexive, then X/U has the
Daugavet property.

Question 2: What if U only has the RNP?
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Poor subspaces

Freie Universitat i
whenever V c U.

A subspace U c X is called poor if X/V has the Daugavet property
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Freie Universit
Poor subspaces

A subspace U c X is called poor if X/V has the Daugavet property
whenever V c U.

Proposition

U c L1]0, 1] is poor if and only if for every A c [0, 1] and every € > 0 there
exists g € L [0, 1] supported on A with norm 1 such that ||g|ly~ < €.
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Freie Universita ] Berlin

Poor subspaces

Definition
A subspace U c X is called poor if X/V has the Daugavet property
whenever V c U.

Proposition

U c L41]0, 1] is poor if and only if for every A c [0, 1] and every € > 0 there
exists g € L [0, 1] supported on A with norm 1 such that ||g|ly~ < €.

Corollary

For the restriction map Ra: L1[0, 1] — L1(A), the set Ra(By) is nowhere
dense if U c L1]0, 1] is poor.
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Poor subspaces

Definition

A subspace U c X is called poor if X/V has the Daugavet property
whenever V c U.

Proposition

U c L1]0, 1] is poor if and only if for every A c [0, 1] and every £ > 0 there
exists g € L [0, 1] supported on A with norm 1 such that ||g|ly~ < €.

Corollary

For the restriction map Ra: L1[0, 1] — L1(A), the set Ra(By) is nowhere
dense if U c L1]0, 1] is poor.

Theorem

There exists a subspace U c L1]0, 1] that is isomorphic to £1 but not poor.
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Poor subspaces

A subspace U c X is called poor if X/V has the Daugavet property
whenever V c U.

U c L1]0, 1] is poor if and only if for every A c [0, 1] and every £ > 0 there
exists g € L [0, 1] supported on A with norm 1 such that ||g|ly~ < €.

Corollary

For the restriction map Ra: L1[0, 1] — L1(A), the set Ra(By) is nowhere
dense if U c L1]0, 1] is poor.

There exists a subspace U c L1]0, 1] that is isomorphic to £1 but not poor.
Consequently, for some subspace V c L1]0, 1] with the RNP, L1[0, 1}/V
fails the Daugavet property.
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-4

Poor subspaces

A subspace U c X is called poor if X/V has the Daugavet property
whenever V c U.

U c L1]0, 1] is poor if and only if for every A c [0, 1] and every £ > 0 there
exists g € L [0, 1] supported on A with norm 1 such that ||g|ly~ < €.

Corollary

For the restriction map Ra: L1[0, 1] — L1(A), the set Ra(By) is nowhere
dense if U c L1]0, 1] is poor.

There exists a subspace U c L1]0, 1] that is isomorphic to £1 but not poor.
Consequently, for some subspace V c L1]0, 1] with the RNP, L1[0, 1}/V
fails the Daugavet property. V can even be chosen to be isomorphic to /3.
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The almost Daugavet property

Freie Universitdt

Y c X* such that

X has the almost Daugavet property if there exists a norming subspace

lid+Tl=1+ITIl
for all operators T : X — X of the form Tx =y (x)Xo0, y; €Y.
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The almost Daugavet property

X has the almost Daugavet property if there exists a norming subspace
Y c X* such that

lid+Tl=1+Tll
for all operators T : X — X of the form Tx =y (x)Xo0, y; €Y.

{1 has the almost Daugavet property, but not the Daugavet property.
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Freie Universita

The almost Daugavet property

X has the almost Daugavet property if there exists a norming subspace
Y c X* such that
ld+ Tl =1+ITIl

for all operators T : X — X of the form Tx =y (x)Xo0, y; €Y.

{1 has the almost Daugavet property, but not the Daugavet property.

Theorem

The following are equivalent for a separable Banach space X:
@ X has the almost Daugavet property.
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The almost Daugavet property

X has the almost Daugavet property if there exists a norming subspace
Y c X* such that
ld+ Tl =1+ITIl

for all operators T : X — X of the form Tx =y (x)Xo0, y; €Y.

{1 has the almost Daugavet property, but not the Daugavet property.

The following are equivalent for a separable Banach space X:
@ X has the almost Daugavet property.

@ There exists a sequence (e}) in X* that is isometrically equivalent to

the unit vector basis of /1 and such that Iin{e;: k > n} is norming for
every n.
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The almost Daugavet property and types

Freie Universitdt

Berlin
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The almost Daugavet property and types

Freie Universita

| Berlin

@ A type on a Banach space is a function of the form
T(x) = lim [Ix + Xxnll.
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The almost Daugavet property and types

Freie Universita

| Berlin

@ A type on a Banach space is a function of the form
T(x) = lim [Ix + Xxnll.

@ If (xn) € Sx and T(x) = ALrQo|IX+xn|| = [Ix]| + 1, we call T a canonical
£1-type.
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The almost Daugavet property and types

Freie Universitdt ] Berlin
@ A type on a Banach space is a function of the form
T(x) = lim [Ix + Xxnll.

@ If (xn) € Sx and T(x) = ’Jergollx+xn|| = [Ix]| + 1, we call T a canonical
£1-type.

Theorem

A separable Banach space X has the almost Daugavet property if and
only if X admits a canonical £;-type.
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The almost Daugavet property and types

Freie Universitd ] Berlin
@ A type on a Banach space is a function of the form
T(x) = lim [Ix + Xxnll.

@ If (xn) € Sx and T(x) = ’Jergollx+xn|| = [Ix]| + 1, we call T a canonical
£1-type.

Theorem

A separable Banach space X has the almost Daugavet property if and
only if X admits a canonical £;-type.
If X has the almost Daugavet property, then X contains a copy of /3. I
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The almost Daugavet property and types

@ A type on a Banach space is a function of the form
T(x) = lim [Ix + Xxnll.

@ If (xn) € Sx and T(x) = Aergollx+xn|| = [Ix]| + 1, we call T a canonical
{1-type.

A separable Banach space X has the almost Daugavet property if and
only if X admits a canonical £1-type.

v

If X has the almost Daugavet property, then X contains a copy of /3. l

A separable Banach space X can be renormed to have the almost
Daugavet property if and only if X contains a copy of /3.
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The numerical range of an operator
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The numerical range of an operator

Freie Universit

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Berlin

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.
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The numerical range of an operator

Freie Universita

1 et
% erlin
Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.

@ Let X be a Banach space and T: X — X a linear operator. The
numerical range of T is

V(T) = {x*(Tx): xeX, x* eX*, |Ix|| = |Ix*|| =x*(x) =1}
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The numerical range of an operator

Freie Universita

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.

@ Let X be a Banach space and T: X — X a linear operator. The
numerical range of T is

V(T) = {x*(Tx): xeX, x* eX*, |Ix|| = |Ix*|| =x*(x) =1}
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The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.

@ Let X be a Banach space and T: X — X a linear operator. The
numerical range of T is

V(T) = {x*(Tx): xeX, x* eX*, |Ix|| = |Ix*|| =x*(x) =1}

@ X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).
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The numerical range of an operator

Freie Universita

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.

@ Let X be a Banach space and T: X — X a linear operator. The
numerical range of T is

V(T) = {x*(Tx): xeX, x* eX*, |Ix|| = |Ix*|| =x*(x) =1}

@ X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).
@ X Banach space: in general, V(T) is not convex.
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The numerical range of an operator

Freie Universitdt

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.

@ Let X be a Banach space and T: X — X a linear operator. The
numerical range of T is

V(T) = {x*(Tx): xeX, x* eX*, |Ix|| = |Ix*|| =x*(x) =1}

@ X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).
@ X Banach space: in general, V(T) is not convex.
Crabb 1969),

@ V(T) contains the convex hull of the spectrum of T (Wintner 1929;
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The numerical range of an operator

Freie Universita

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

@ Let X be a Hilbert space and T: X — X a linear operator. The
numerical range of T is

V(T) = {(Tx, x): |Ix|l = 1}.

@ Let X be a Banach space and T: X — X a linear operator. The
numerical range of T is

V(T) = {x*(Tx): xeX, x* eX*, |Ix|| = |Ix*|| =x*(x) =1}

@ X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).
@ X Banach space: in general, V(T) is not convex.

(Stone 1931, Berberian 1964).

@ V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
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The numerical index
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The numerical index

Freie Universita

JBerlin
The number v(T) =sup{|A|: A € V(T)}, that is

is called the numerical radius of T.

v(T) =sup{Ix* (TX)l: x € X, x* e X*, |Ix]| = lIx* || = x* (x) = 1},
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The numerical index

Freie Universita

JBerlin
The number v(T) =sup{|A|: A € V(T)}, that is

v(T) =sup{Ix* (TX)l: x € X, x* e X*, |Ix]| = lIx* || = x* (x) = 1},

is called the numerical radius of T. (Obviously v(T) < ||T||.)
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The numerical index

Freie Universita r Berlin
The number v(T) =sup{|A|: A € V(T)}, that is

v(T) =sup{Ix* (TX)l: x € X, x* e X*, |Ix]| = lIx* || = x* (x) = 1},

is called the numerical radius of T. (Obviously v(T) < ||T||.)
The best constant k > 0 in the inequality

KITI < v(T) <||IT|| fur alle T: X —» X
is called the numerical index of X, denoted by n(X).
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The numerical index

Freie Universita Fr Berlin
The number v(T) =sup{|A|: A € V(T)}, that is

V(T) =sup{[x*(Tx)l: x € X, x* e X*, |Ix] = lIx*|| = x*(x) =1},

is called the numerical radius of T. (Obviously v(T) < ||T||.)

The best constant k > 0 in the inequality

KITI < v(T) <||IT|| fur alle T: X —» X
is called the numerical index of X, denoted by n(X).

The numerical index of an R-Hilbert space is 0, the numerical index of a
C-Hilbert space is 1/2,

Dirk Werner, Banach spaces with the Daugavet property, 7.4.2011 <« & » <& » <

DA 14/18



The numerical index

Freie Universitat ¢ Fr Berlin
The number v(T) = sup{|A|: A € V(T)}, that is

v(T) =sup{Ix*(Tx)l: x € X, x* e X*, |Ix|| = [Ix* || = x*(x) = 1},

is called the numerical radius of T. (Obviously v(T) < ||T||.)
The best constant k > 0 in the inequality

KITI < v(T) <||IT|| fur alle T: X —» X
is called the numerical index of X, denoted by n(X).

The numerical index of an R-Hilbert space is 0, the numerical index of a
C-Hilbert space is 1/2, the numerical index of a C-Banach space is > 1/e;
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Freie Universit'eit l) Berlin
The numerical index

The number v(T) = sup{|A|: A € V(T)}, that is
v(T) =sup{Ix*(Tx)l: x € X, x* € X*, |Ix]| =lIx*[| =x*(x) =1},

is called the numerical radius of T. (Obviously v(T) < ||T||.)

Definition

| A\

The best constant k > 0 in the inequality

KITI < v(T) <||T|| fur alle T: X — X

is called the numerical index of X, denoted by n(X).

The numerical index of an R-Hilbert space is 0, the numerical index of a

C-Hilbert space is 1/2, the numerical index of a C-Banach space is > 1/e;
n(C(K)) =1, n(L} (1)) = 1, n(A(D)) = 1.
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The duality problem for the numerical index

Freie Universitdt
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The duality problem for the numerical index
Problem

| Berlin

n(X) = n(X*) 727
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The duality problem for the numerical index
Problem

Freie Universita

| Berlin

n(X) = n(X*) 727

nX)=1 & nX*)=177
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The duality problem for the numerical index
Problem

Freie Universita

| Berlin

n(X) = n(X*) 727

nX)=1 & n(X*)=177?
“>"resp.

<" always hold; hence “yes” for reflexive X.
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The duality problem for the numerical index
Problem

Freie Universita

Berlin

n(X) = n(X*) 727

nX)=1 & n(X*)=177?
“>"resp.

<" always hold; hence “yes” for reflexive X.

Connection with the Daugavet equation (for real Banach spaces):
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The duality problem for the numerical index
Problem

Freie Universit

n(X) = n(X*) 727

nX)=1 & n(X*)=177?
“>"resp.

<" always hold; hence “yes” for reflexive X.

supV(T) =TIl

Connection with the Daugavet equation (for real Banach spaces)
s

lid+Tll=1+Tll
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The duality problem for the numerical index
Problem

Freie Universita

n(X) = n(X*) 727

nX)=1 & n(X*)=177?
“>"resp.

<" always hold; hence “yes” for reflexive X.

supV(T) =TIl

Connection with the Daugavet equation (for real Banach spaces):
=

lid+Tll=1+Tll
v =ITI < max|lld=T]l =1+l
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The duality problem for the numerical index
Problem

Freie Universita

n(X) = n(X*) 727

nX)=1 & nX*)=177
i3 resp. “e

<" always hold; hence “yes” for reflexive X.

supV(T) =TIl

Connection with the Daugavet equation (for real Banach spaces):
s

lid+Tll=1+Tll
v =ITI < max|lld=T]l =1+l

n(X)=1if and only if max+ [|Ild£T||=1+||T|| forall T: X — X. l
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The duality problem for the numerical index

Problem

nX)=n(X*)?777  nX)=1 & n(X*)=177?

“>" resp. “«<" always hold; hence “yes” for reflexive X.

Connection with the Daugavet equation (for real Banach spaces):
supV(T)=IITll &< Id+Tl=1+]TIl
v =ITI < max|lld=T]l =1+l

n(X)=1if and only if max+ [|Ild£T||=1+||T|| forall T: X — X. I

Note:

Daugavet property # n(X) = 1 (e.g. X = C([0, 1], R2));
n(X) =1 # Daugavet property (e.g. X = co).
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Lush Banach spaces

Freie Universitdt

Berlin
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Lush Banach spaces

Freie Universitdt

Berlin

A (real) Banach space X is called lush if for all ||xo|]| =1, |lyoll=1 and € > 0

there exists an e-slice S containing xg such that dist(yo, co(Su -S)) < €.
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Lush Banach spaces

Freie Universitd | Berlin
A (real) Banach space X is called lush if for all ||xo|]| =1, |lyoll=1 and € > 0
there exists an e-slice S containing xg such that dist(yo, co(Su -S)) < €.

C(K), L*(k), A(D);
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Lush Banach spaces

Freie Universitat cf| Se
A (real) Banach space X is called lush if for all ||xo|]| =1, |lyoll=1 and € > 0
there exists an e-slice S containing xg such that dist(yo, co(Su -S)) < €.

C(K), L1(u), A(D); rich subspaces of C(K).
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Lush Banach spaces

Freie Universitdt (/.S ) Berlin
A (real) Banach space X is called lush if for all ||xo|]| =1, |lyoll=1 and € > 0
there exists an e-slice S containing xg such that dist(yo, co(Su -S)) < €.

C(K), L1(u), A(D); rich subspaces of C(K).

Proposition

Every lush space has numerical index 1.
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The solution of the duality problem
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The solution of the duality problem

Freie Universita

l Berlin

Let X = {f € C[0, 2]: f(0) + f(1) + f(2) = 0}. Then n(X) = 1, but n(X*) < 1/2.
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The solution of the duality problem

Freie Universita 1 Berlin

Let X = {f € C[0, 2]: f(0) +f(1) +f(2)=0}. Then n(X) =1, but n(X*) < 1/2.
Elements of the proof:
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The solution of the duality problem

Freie Universita 1 Berlin

Let X = {f € C[O0, 2]: f(0) +f(1)+f(2)=0}. Then n(X) =1,
Elements of the proof:

but n(X*) < 1/2.
@ X is lush, hence n(X) =1.
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The solution of the duality problem

Freie Universita

Let X = {f € C[0, 2]: f(0) +f(1) +f(2)=0}. Then n(X) =1, but n(X*) < 1/2.
Elements of the proof:

@ X is lush, hence n(X) =1.

o LetY={feX: f(0)=f(1)=f(2)=0}. Then X* =Y* ®; YL and
therefore n(X*) < n(Y1).
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The solution of the duality problem

Freie Universita

Let X = {f € C[0, 2]: f(0) +f(1) +f(2)=0}. Then n(X) =1, but n(X*) < 1/2.
Elements of the proof:

@ X is lush, hence n(X) =1.

o LetY={feX: f(0)=f(1)=f(2)=0}. Then X* =Y* ®; YL and
therefore n(X*) < n(Y1).

o YL=(X/Y)* and X/Y = {(x,y,z) €3 : x+y+2z=0}.
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The solution of the duality problem

Freie Universita

Let X = {f € C[0, 2]: f(0) +f(1) +f(2)=0}. Then n(X) =1, but n(X*) < 1/2.
Elements of the proof:

@ X is lush, hence n(X) =1.

o LetY={feX: f(0)=f(1)=f(2)=0}. Then X* =Y* ®; YL and
therefore n(X*) < n(Y1).

hence n(X/Y)=1/2.

o YL=(X/Y)* and X/Y = {(x,y,z) €3 : x+y+2z=0}.
@ The unit ball of this two-dimensional space is a regular hexagon,
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The solution of the duality problem

Freie Universita

Let X = {f € C[0, 2]: f(0) +f(1) +f(2)=0}. Then n(X) =1, but n(X*) < 1/2.
Elements of the proof:

@ X is lush, hence n(X) =1.

o LetY={feX: f(0)=f(1)=f(2)=0}. Then X* =Y* ®; YL and
therefore n(X*) < n(Y1).

@ The unit ball of this two-dimensional space is a regular hexagon,
hence n(X/Y)=1/2.

There is a real Banach space with n(X) =1, but n(X*) =0. I
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Epilogue

Freie Universita

Berlin
“I have noticed,” said Mr. K., “that we put many people off our teachings
because we have an answer to everything. Could we not, in the interests
of propaganda, draw up a list of the questions that appear to us
completely unsolved?”

Bertolt Brecht, Stories of Mr Keuner
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All contributions are welcome!
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