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Let D = {z ∈ C : |z | < 1} be the open unit disc in the complex
plane C.

A univalent function g is a one-to-one holomorphic function in D.

The class of univalent functions in D will be denoted by U .
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General problems

Question

What do univalent functions belong to some standard space of
analytic functions in D?
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If g is a conformal map from D onto a Jordan domain Ω whose
boundary ∂Ω = C is a Jordan curve,

Question

A fundamental question in the theory of conformal maps is the
relationship between the geometric properties of C and the analytic
properties of g .
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Scheme of the talks

Function spaces and univalence

Geometric properties

Local univalence
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Hardy spaces

H(D) is the algebra of all analytic functions in D. For 0 < p < ∞,
the Hardy space Hp consists of those f ∈ H(D) for which

‖f ‖p
Hp := ĺım

r→1−
Mp

p (r , f ) := ĺım
r→1−

1

2π

∫ 2π

0
|f (re it)|p dt < ∞.

The space of bounded analytic functions on D is denoted by H∞.

A classical result due to Fatou states that every Hardy function has
a radial limit almost everywhere on the unit circle
T := {z : |z | = 1}.
f (ζ) denotes the radial limit of f at ζ ∈ T.
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0 < p < q ⇒ Hq ⊂ Hp

Theorem (Prawitz 1927)

If f ∈ H(D) is univalent then f ∈ HP for all p < 1
2 .

Theorem (Hardy-Littlewood (1920), Pommerenke (1962))

Let 0 < p < ∞ and suppose f ∈ U . Then f ∈ Hp if and only if∫ 1

0
Mp
∞(r , f )dr < ∞ .

Moreover, if 0 < p < 2 then f ∈ Hp if and only if∫ 1

0
Mp

1 (r , f ′)dr < ∞ .
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BMOA

The space BMOA of analytic functions with bounded mean
oscillation on T consists of those f ∈ H2 for which

‖f ‖2
BMOA = sup

ζ∈D
‖fζ‖2

H2

= sup
ζ∈D

1

2π

∫
T
|f (z)− f (ζ)|2 1− |ζ|2

|z − ζ|2
|dz | < ∞,(2.1)

where
fζ(z) := (f ◦ ϕζ)(z)− f (ζ),

and

ϕζ(z) :=
ζ − z

1− ζz
.

Alternative characterizations of BMOA, Garnett’s (1981),
Baernstein (1980) or Girela (2000).
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VMOA

H∞ ⊂ BMOA ⊂
⋂
p>0

Hp .

The space VMOA consists of those f ∈ H2 for which the integral
in (2.1) tends to zero as ζ approaches to the boundary T, i.e

ĺım
|z|→1−

1

2π

∫
T
|f (z)− f (ζ)|2 1− |ζ|2

|z − ζ|2
|dz | = 0.
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Bloch space

BMOA is a subspace of the Bloch space

B :=

{
f ∈ H(D) : ‖f ‖B := sup

z∈D
|f ′(z)|(1− |z |2) < ∞

}
,

and VMOA is a subspace of both BMOA and the little Bloch space

B0 :=

{
f ∈ H(D) : ĺım

|z|→1−
|f ′(z)|(1− |z |2) = 0

}
.

It follows from the definition that

f ∈ B ⇒ |f (z)| . log
1

1− |z |2
, z ∈ D.
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Dirichlet space

Recall that f ∈ H(D) belongs to the classical Dirichlet space D if

‖f ‖2
D :=

1

π

∫
D
|f ′(z)|2 dA(z) + |f (0)|2 < ∞,

where dA(z) denotes the element of the Lebesgue area measure on
D.

If f ∈ D, then Area(f (D)) is finite, counting multiplicities.

It is easy to see that

D ⊂ VMOA ⊂ B0.
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Qp spaces

Qp , 0 ≤ p < ∞, is the Möbius invariant subspace of B that
consists of all those functions f ∈ H(D) for which

‖f ‖2
Qp

:= sup
a∈D

∫
D
|f ′(z)|2gp(z , a)dA(z) < ∞ .

g(z , a) = − log |ϕa(z)| is the Green function of D with singularity
at a. Similarly, we say that f ∈ Qp,0 iff

ĺım
|a|→1

∫
D
|f ′(z)|2gp(z , a)dA(z) = 0.
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Qp1 $ Qp2 , 0 ≤ p1 < p2 < ∞.

Q0 = D

Q1 = BMOA

Qp = B p > 1.

D ⊂ Q1,0 = VMOA ⊂ B0 = Qp,0 p > 1.



Introduction Function spaces and univalence The Logarithm of the derivative

Theorem (Pommerenke 1977)

BMOA ∩ U = B ∩ U

Theorem (Aulaskari, Lappan, Xiao and Zhao, 1997)

For any p > 0,
Qp ∩ U = B ∩ U
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Analytic Besov spaces

For 1 < p < ∞, the analytic Besov spaces Bp is defined as the set
of all functions f ∈ H(D) such that∫

D
|f ′(z)|p(1− |z |2)p−2dA(z) < ∞.

Note that B2 = D.

Bp ⊂ B, p > 1.
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Univalent domains

Let X be a space of analytic functions in D

Definition

A planar domain Ω is said to be an X domain if every analytic
function in D with the property f (D) ⊂ Ω must belong to X .

Definition

A planar domain Ω will be called univalent X domain if every
f ∈ U which applied D into Ω must belong to X .
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If Ω is a simply connected proper domain of the complex plane and
f ∈ U such that f (D) = Ω, then

dΩ(f (z)) ≤ |f ′(z)|(1− |z |2) ≤ 4dΩ(f (z)), z ∈ D,

where dΩ(w) stands for the Euclidean distance from w to the
boundary of Ω.

Therefore univalent functions in the Bloch space can be
characterized by the following well known geometric condition:

Theorem

If f ∈ U then
f ∈ B ⇔ sup

w∈Ω
dΩ(w) < ∞,

Therefore, the image of D under f does not contain arbitrarily
large discs.
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Stegenga described BMOA domain in a quite tangible and
visualized way. Put ∆(w0,R) = {w ∈ C : |w − w0| < R} and
Q(w0,R) = ∆(w0,R) \ Ω.

Theorem (Stegenga 1978)

Set a domain Ω. The following assertions are equivalent:

(i) Ω is a BMOA domain.

(ii) There exist positive constants R and δ such that

cap(Q(w0,R)) ≥ δ,

for all w0 ∈ C.

The complements of Ω are reasonably thick (measured in potential
theory terms) in the vicinity of every point in the plane.
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Hedenmalm observed that there is no Qp domains.

Donaire-Girela- Vukotic (2002) showed that there is no Bp

domains.
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Theorem (Walsh 2000)

Let 1 < p < ∞ and let Ω be a simply connected proper domain. If
f ∈ U and f (D) = Ω, then f ∈ Bp if and only if∫

Ω
dΩ(w)p−2dA(w) < ∞.
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P-G and Rättyä

For 0 < p < ∞ and −1 < α < ∞, the weighted Bergman space
Ap

α consists of those f ∈ H(D) for which

‖f ‖p
Ap

α
:=

∫
D
|f (z)|p(1− |z |2)α dA(z) < ∞,

Theorem (Baernstein-Girela- Peláez 2007)

Let 0 < p < ∞, −1 < α < ∞ and f ∈ U . Then f ∈ Ap
α if and only

if ∫ 1

0
r(1− r2)α

(∫ r

0
Mp
∞(ρ, f ) dρ

)
dr < ∞.

Moreover, if 0 < p < 2, then f ∈ Ap
α if and only if∫ 1

0
r(1− r2)α

(∫ r

0
Mp

1 (ρ, f ′) dρ

)
dr < ∞.
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The Hardy space Hp is identified with the limit space of the
weighted Bergman space Ap

α as α → −1+, and therefore the
notation Ap

−1 := Hp is adopted.

One reason to do so is that ĺımα→−1+ ‖f ‖Ap
α

= ‖f ‖Hp

On the other hand, a generalization of the Littlewood-Paley
formula due to Stein states that

‖f ‖p
Hp =

p2

2

∫
D
|f (z)|p−2|f ′(z)|2 log

1

|z |
dA(z) + |f (0)|p . (2.2)
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An analogous formula for the weighted Bergman space exists,
namely

‖f ‖p
Ap

α
'
∫

D
|f (z)|p−2|f ′(z)|2

(
log

1

|z |

)α+2

dA(z)+ |f (0)|p , (2.3)

(Smith, 1996)
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In Theorem of Baernstein et al., α = −1 can not be substituted
since the singularities would become too strong. However, an
application of Fubini’s theorem yields
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∫ 1

0
r(1− r2)α

(∫ r

0
Mp
∞(ρ, f ) dρ

)
dr

=

∫ 1

0
Mp
∞(ρ, f )

∫ 1

ρ
r(1− r2)α dr dρ

=
1

2(α + 1)

∫ 1

0
Mp
∞(ρ, f )(1− ρ2)α+1 dρ,

and similarly ∫ 1

0
r(1− r2)α

(∫ r

0
Mp

1 (ρ, f ′) dρ

)
dr

=
1

2(α + 1)

∫ 1

0
Mp

1 (ρ, f ′)(1− ρ2)α+1 dρ.
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This shows that Theorem of Baernstein, Girela and Peláez indeed
generalizes Theorem of Hardy-Littlewood et al. for the weighted
Bergman spaces, and thus the following result holds.

Theorem

Let 0 < p < ∞, −1 ≤ α < ∞ and f ∈ U . Then f ∈ Ap
α if and only

if

Jp
α(f ) :=

∫ 1

0
Mp
∞(r , f )(1− r2)α+1 dr < ∞.

Moreover, if 0 < p < 2, then f ∈ Ap
α if and only if

Kp
α(f ) :=

∫ 1

0
Mp

1 (r , f ′)(1− r2)α+1 dr < ∞.
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The second part of the assertion is true in the case p = 1 and
−1 < α < ∞ for all f ∈ H(D). To see this, it suffices to observe
that

‖f ‖A1
α
' ‖f ′‖A1

α+1
+ |f (0)| ' K 1

α(f ) + |f (0)|,

where the first asymptotic equality follows by the well-known result
‖f ‖Ap

α
' ‖f ′‖Ap

p+α
+ |f (0)| for all 0 < p < ∞ and −1 < α < ∞,

and the second one is a simple consequence of the fact that
Mp

1 (r , f ′) is an increasing function of r .
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Hardy-type spaces

For 0 < p < ∞ and −3 < α < ∞, the Hardy type space Hp
α

consists of those analytic functions f in D for which

‖f ‖p
Hp

α
:=

∫
D
|f ′(z)|2|f (z)|p−2(1− |z |2)α+2 dA(z) < ∞.

This function space appears in several occasions in the existing
literature.

Mateljević and Pavlović (1983)

Girela, Pavlović and Peláez (2007)
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For 0 < p < ∞ and −2 < α < ∞, the Sp
α consists of those

analytic functions f in D for which

‖f ‖p
Sp

α
:=

∫ 1

0
r(1− r2)α+1

(∫
∆(0,r)

|f ′(z)|2 dA(z)

) p
2

dr < ∞.
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Theorem (P.-G. and Rättyä 2008)

Let 0 < p < ∞ and −2 ≤ α < ∞. Then

Hp
α ∩ U = Sp

α ∩ U .

Theorem (P.-G. and Rättyä 2008)

Let 0 < p < ∞ and −2 ≤ α < ∞ and suppose f ∈ U . The
following assertions are equivalent

f ∈ B.

supa∈D ‖f ◦ ϕa − f (a)‖Hp
α
.

supa∈D ‖f ◦ ϕa‖Sp
α
.

supa∈D Jp
α(f ◦ ϕa − f (a)) < ∞.
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In 1978, Pommerenke characterized both asymptotically conformal
and asymptotically smooth curves in terms of analytic properties of
log g ′.

Let C be a (closed) Jordan curve in the complex plane C and let
C (wl ,w2) denote the smaller arc of C between the points w1 and
w2 on C.

C is called asymptotically conformal if

máx
w∈C(w1,w2)

|w2 − w |+ |w − w1|
|w2 − w1|

→ 1, as |w2 − w1| → 0,

and quasi-conformal if this maximum is uniformly bounded for all
w1,w2 ∈ C.
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asymptotically conformal

The latter case occurs if and only if C is the image of a circle
under a quasi-conformal mapping of C (Pommerenke, 1975), and
therefore quasi-conformal curves are usually called quasi-circles.

The concept of asymptotically conformal curves was introduced by
Becker in 1972 and it fits nicely between the theories of
quasi-conformal and smooth curves.
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asymptotically smooth

In addition, recall that if C is a rectifiable Jordan curve and
l(w1,w2) denotes the length of the shorter arc on C joining w1 and
w2, then C is said to be asymptotically smooth if

l(w1,w2)

|w2 − w1|
→ 1, as |w2 − w1| → 0,

and quasi smooth if this quotient is uniformly bounded for all
w1,w2 ∈ C.

Inner domains of quasi smooth curves are also known as chord-arc
or Lavrentiev domains.
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and quasi smooth if this quotient is uniformly bounded for all
w1,w2 ∈ C.

Inner domains of quasi smooth curves are also known as chord-arc
or Lavrentiev domains.
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Theorems of Pommerenke 1978

Let g be a conformal map from the unit disc D onto the inner
domain bounded by the Jordan curve C = g(T).

C is asymptotically conformal if and only if log g ′ belongs to
the little Bloch space B0.

C is asymptotically smooth if and only if log g ′ belongs to
VMOA.
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log g ′ ∈ BMOA

For g locally univalent in D (g ′(z) 6= 0 for any z), the Schwarzian
derivative is defined as

Sg (z) =

(
g ′′(z)

g ′(z)

)′
− 1

2

(
g ′′(z)

g ′(z)

)2

Astala and Zeinsmeister (1991) studied the set of conformal maps
g such that log g ′ ∈ BMOA.

Theorem (Astala-Zinsmeister 1991)

Let f be a conformal map on D. Then the following assertions are
equivalent:

log g ′ ∈ BMOA with small norm.

g(∂D) is a Lavrentiev curve.

|Sg (z)|2(1− |z |2)3dA(z) is a Carleson measure on D.
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Bishop and Jones obtained a complete (analytic and geometric)
description of those simply connected domains Ω such that any
Riemann map g of D onto Ω satisfies log g ′ ∈ BMOA.

Theorem (Bishop-Jones 1994)

The following assertions are equivalent:

log g ′ ∈ BMOA.

|Sg (z)|2(1− |z |2)3dA(z) is a Carleson measure on D.

There exist δ > 0 and C > 0 such that for all z0 ∈ Ω there is
a subdomain U ⊂ Ω such that

(i) z0 ∈ U and dist(z0, ∂Ω) ≤ dist(z0, ∂U).
(ii) ∂U is chord-arc with constant at most C and

l(∂U) ≤ Cdist(z0, ∂Ω).

There exist δ > 0 and C > 0 such that for all z0 ∈ Ω there is
a Lipschitz domain V ⊂ D such that

(i) z0 ∈ V .
(ii) ω(z0, ∂V ∩ ∂D,V ) ≥ δ, and
(iii)

∫
V
|g ′(z)||Sg (z)|2(1− |z |2)3dA(z) ≤ C |g ′(z0)|(1− |z0|2).
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These results in terms of the Schwarzian derivative have been
recently extended to other spaces of functions

Theorem (Pau-Peláez 2009)

For 0 < p < ∞, the following assertions are equivalent:

log g ′ ∈ Qp.

|Sg (z)|2(1− |z |2)p+2dA(z) is a Carleson measure on D.
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If Γ = ∂Ω is a Jordan curve and g is a conformal map from D onto
Ω, let us consider the geometric quantity

η(δ) := sup
|w1−w2|≤δ

sup
w∈Γ(w1,w2)

(
|w2 − w |+ |w − w1|

|w2 − w1|
− 1

) 1
2

, 0 ≤ δ < 1.

Theorem (Pau-Peláez)

Let 0 < p < 1 and let g ∈ U such that Γ = ∂g(D) is a closed
Jordan curve. If ∫ 1

0

η2(t)

t2−p
< ∞

then log g ′ ∈ Qp,0
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Theorem (PG- Rättyä 2009 )

Let 1 < p < ∞ and g : D → Ω be a conformal map such that
g(T) is a closed Jordan curve. Then, the following assertion are
equivalent:

log g ′ ∈ Bp

I (g) :=

∫
D
|Sg (z)|p(1− |z |2)2p−2dA(z) < ∞ .

In particular, log g ′ ∈ D if and only if Sg (z)(1− |z |2) ∈ L2(D).
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Theorem (PG- Rättyä 2009 )

Let 0 < s ≤ 1 and g : D → Ω be a conformal map such that g(T)
is a closed Jordan curve. Then, the following assertion are
equivalent:

log f ′ ∈ Qs,0

|Sg (z)|2(1−|z |2)2+sdA(z) is a vanishing s− Careson measure.

In particular,

log g ′ ∈ VMOA if and only if |Sg (z)|2(1− |z |2)3dA(z) is a
vanishing Carleson measure on D.
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These results have been recently extended to the general class of
spaces, the so-called Fp,q,s , where p > 0, q > −2 and s ≥ 0,
defined as the set of all analytic functions f in D for which

sup
a∈D

∫
D
|f ′(z)|p(1− |z |2)q(1− |ϕa(z)|2)sdA(z) < ∞ .

Fp,p−2,0 = Bp.

F2,0,0 = D
F2,0,s = Qp

F2,0,1 = BMOA

For q + s ≥ −1, 1 ≤ p < ∞ and q + 2 ≤ p , then Fp,q,s ⊂ B.
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Theorem (Zorboska 2011)

Let 1 ≤ p < ∞, −2 < q < ∞, 0 ≤ s and q + s > −1 and f ∈ U .

For p = q + 2, f ∈ Fp,q,s if and only if
dµ(z) = |Sf (z)|p(1− |z |2)p+q+sdA(z) is an s-Carleson
measure on D.

For p > q + 2, f ∈ Fp,q,s if and only if log f ′ ∈ B0 and
dµ(z) = |Sf (z)|p(1− |z |2)p+q+sdA(z) is an s-Carleson
measure on D.
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THANK YOU VERY MUCH
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