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I: STRANGE CASE OF COMPANIES X AND Y
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• In Imaginetown two rival companies, X, Y , lau-

nched simultaneously their fourth generation E-LOTs.

• No publicity: costumer satisfaction thought to be

best ad.
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• Ann bought an X E-LOT and Ben got a Y . After

that, each interested person talked to one, randomly

met, E-LOT owner and immediately bought X or Y

according to the information received.

• Next buyers were Carla X, Daniel Y , Elaine X,

Francis X, Gordon X, . . .
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• This was the evolution of the market share of X:
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• After an initial period with fluctuations (comprising

the 25 or 50 first sales), the share of X stabilized at

approx. 80%.

•What is the reason for the success of X?
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Some possible explanations:

• E-LOT X is superior to Y ?

• But perhaps E-LOT X was bought by more persu-

asive people?

• or . . .
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• The truth: E-LOTS X e Y are indistinguishable.

• All buyers were very pleased with their purchases

and always recommended the brand they own.

• X is bought by people who randomly ran into X

owners, and likewise for Y .
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• e.g. Carla bought X because she asked Ann que

who had X, had she run into Ben she would have

bought Y .

• The graph we saw is entirely the result of random-

ness!!!

• If the experiment is rerun and the initial encounters

are different . . .
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. . . things are thus:
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. . . or thus:
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. . . or:
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• MATHS: May prove rigorously (Polya urn martin-
gale) that each time the experiment is performed the
market share of X (and hence that of Y ) will appro-
ach a limit as the number of devices sold increases.

• The value of the limit changes from one repetition
of the experiment to the next.

• The distribution of the limit is uniform in the interval
from 0% to 100%.
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Two points:

(1) Random procedures that involve sufficiently many

steps (or many atoms, genes, individuals, . . . ) often

result in regular patterns.

(2) We quickly come up with causal explanations of

those patterns.
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•We are surrounded by examples of regularities in-
duced by randomness.

• The purposeless random motion of Na and Cl ions
leads to uniformly salted water.
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• Likewise we have to thank randomness for the fact

that molecules of oxygen in this room do not all go to

one of the corners. [Molecules do not decide where

to go.]

• Individuals of an animal species distribute them-

selves evenly in a given habitat when they move

randomly.

16



Finding causes:

“. . . the desire to find those causes is implanted in

man’s soul.” (L. Tolstoi, War and Peace, Chapter 1,

Book XIII).

“. . . communally led into the belief that world events

have identifiable causes . . . ” (L. Valiant).
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• The popular book Thinking fast and slow (Kahne-

man) reports many experiments showing our bias

toward finding causes.
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• This bias may well have resulted from evolutional

advantages:
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• More generally, the learning algorithms in our he-

ads are biased towards generalization/construction

of theories, even when such generalizations are not

warranted.

• The algorithms are very successful most of the

time. Hence our surprise when they do not work

well.
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• Listening to this talk made one of my colleagues

quickly came up with a generalization: always try

and be the first in the market. This may be more

important than the quality of product you sell.
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II: COMPUTING INTEGRALS
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•Wish to compute (approximately)∫ ∞
0

f(x)ρ(x) dx,

where the weight function ρ(x) = exp(−x) is seen

as fixed once and for all. We use a quadrature rule

with m (f -independent) abscissas xi/ weights wi:

m∑
i=1

wif(xi).
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• Optimal choice of the xi: zeros of Laguerre poly-
nomials:

L2(x) =
1

2
(x2 − 4x+2)

L3(x) =
1

6
(−x3 +9x2 − 18x+6)

L4(x) =
1

24
(x4 − 16x3 +72x2 − 96x+24)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• E.g. for m = 5 the abscissas are approximately:
0.263560319718

1.413403059107

3.596425771041

7.085810005859

12.640800844276
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• I test the rule in the simple example f(x) = cosx,

where I know the true value of the integral. The

(small) relative errors are:

m = 2 m = 3 m = 4 m = 5

1.4(−1) −4.7(−2) 5.0(−3) 1.1(−3)

• For m = 5, if the abscissa at 0.26 . . . moves to

0.30 the error increases from 1.1(−3) to 9.5(−3).
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NOTE:

• Construction of rule needed knowledge of weight

function.

• Much ‘theory’ needed to find abscissas and wei-

ghts (integrand approximated by polynomial, theory

of orthogonal polynomials, . . . )

• Little work needed to apply the rule to a given in-

tegrand f (formula useful in precomputer days).
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• Let’s make things harder . . .
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• For f(x) = x1/5 (non differentiable at x = 0):

m = 2 m = 3 m = 4 m = 5

3.9(−2) 2.4(−2) 1.7(−2) 1.3(−2)

[before we had

m = 2 m = 3 m = 4 m = 5

1.4(−1) −4.7(−2) 5.0(−3) 1.1(−3)
].
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• Consider d-fold integral∫
[0,∞)d

F (x1, . . . , xd) ρ(x1, . . . , xd) dx1 · · · dxd,

ρ(x1, . . . , xd) = exp(−x1 − · · · − xd),

and extend the rule:
m∑

i1=1

· · ·
m∑

id=1

wi1 · · ·widF (xi1, . . . , xid).
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• For the smooth integrand

F (x1, . . . , xd) = cosx1 · · · cosxd,

the relative errors would be:

d m = 2 m = 3 m = 4 m = 5

1 1.4(−1) −4.7(−2) 5.0(−3) 1.1(−3)
4 ∗ ∗ ∗ ∗ ∗ ∗ 2.0(−2) 4.3(−3)
16 ∗ ∗ ∗ ∗ ∗ ∗ 8.0(−2) 1.7(−2)
64 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 7.1(−2)
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• The number of times F would have to be evalua-

ted is . . .
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d m = 2 m = 3 m = 4 m = 5

1 1.4(−1) −4.7(−2) 5.0(−3) 1.1(−3)
2 3 4 5

4 ∗ ∗ ∗ ∗ ∗ ∗ 2.0(−2) 4.3(−3)
16 81 256 3125

16 ∗ ∗ ∗ ∗ ∗ ∗ 8.0(−2) 1.7(−2)
65536 4.3(7) 4.2(9) 1.5(11)

64 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 7.1(−2)
1.8(19) 3.4(30) 3.4(38) 5.4(44)
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• For the nonsmooth

F (x1, . . . , xd) = (x1 · · ·xd)1/5

the relative errors would be even worse:

d m = 2 m = 3 m = 4 m = 5

1 3.9(−2) 2.4(−2) 1.7(−2) 1.3(−2)
4 ∗ ∗ ∗ ∗ ∗ ∗ 7.1(−2) 5.4(−2)
16 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
64 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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•We conclude that the ‘clever’ Gauss-Laguerre rule

can only be applied if the dimensionality is low.

• Let us use an alternative, not-so-clever quadrature

rule.
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• Monte Carlo (Metropolis et al. 1953):

∫
[0,∞)d

F (x) ρ(x) dx ≈
1

N

N∑
n=1

F (xn),

with the quadrature nodes xn chosen randomly. (The

approximate value will then be itself random.)

• Here are the relative errors for two runs (nonsmo-

oth integrand) with N = 1,000,000.
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d First run Second run
1 8.1(−4) 8.0(−4)
4 −7.7(−3) −1.2(−2)
16 5.9(−3) −1.3(−2)
64 7.0(−2) −4.0(−3)
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• Algorithm for finding the nodes (zn standard nor-

mal, un uniform, mutually independent) (h = 0.20):

x0 = 0 % or any other point

for n = 1 to N

x∗n = |xn−1 + hzn|
if ρ(x∗n)/ρ(xn−1) > un, xn = x∗n

else xn = xn−1

next n
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NOTE:

• No a priori knowledge of weight function: will work

for all or them. Randomness used systematically to

‘discover’ locations of large weight and place qua-

drature nodes accordingly.

• No great theory needed to design algorithm.

• Application of algorithm requires repetition of sim-

ple steps (formula useful in computer days).
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“Learning is achieved in many steps that are plausi-

ble but innocuous when viewed one by one in isola-

tion. These steps work because there is an overall

algorithmic plan. In combination the steps achieve

something, in particular some kind of convergence”

(L. Valiant).

Also implications for evolution in biology.
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Are our clever theories (Gaussian quadrature) an

emergent result of not-so-clever, randomized algo-

rithms operating in the human mind?

Is our blindness to randomness the result of the

application of not-so-clever, randomized algorithms

operating in the human mind?
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