PROPERTIES OF OPERATORS FROM BANACH FUNCTION SPACES THAT EXTEND TO THEIR OPTIMAL DOMAINS

E. Jiménez Fernández

Departamento de Análisis Matemático.
Universidad de Granada.

Universidad de Granada

Join work with J.M. Calabuig and M.A. Juan and E. A. Sánchez Pérez

F.U.N.A.P.H.Y.
Instituto Universitario de Matemática Pura y Aplicada.
Universidad Politécnica de Valencia.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \to E$ continuous linear operator.
- $T(\chi_A) = m_T(A)$, $A \in \Sigma$ σ-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $l_{m_T} : f \to \int_{\Omega} f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($\mathcal{N}(m_T)$) μ-null ($\mathcal{N}(\mu)$) sets are the same. $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
Notation

- \((\Omega, \Sigma, \mu)\) positive finite measure space.
- \(X(\mu)\) be a \(\sigma\)-o.c. Banach function space, \(E\) Banach space.
- \(T : X(\mu) \rightarrow E\) continuous linear operator.
- \(T(\chi_A) = m_T(A), A \in \Sigma\) \(\sigma\)-additive.
- \(L^1(m_T)\) space of \(m_T\)-integrable functions.
- \(l_{m_T} : f \rightarrow \int_\Omega f dm_T\) is the integration operator.
- \(T\) is \(\mu\)-determined: the \(m_T\)-null \((N(m_T))\) \(\mu\)-null \((N(\mu))\) sets are the same. \(J_T : X(\mu) \hookrightarrow L^1(m_T)\) inclusion.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \to E$ continuous linear operator.
- $T(\chi_A) = m_T(A), A \in \Sigma \sigma$-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $I_{m_T} : f \to \int_{\Omega} f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($\mathcal{N}(m_T)$) μ-null ($\mathcal{N}(\mu)$) sets are the same.
- $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \to E$ continuous linear operator.
- $T(\chi_A) = m_T(A)$, $A \in \Sigma$ σ-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $l_{m_T} : f \to \int_{\Omega} f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($\mathcal{N}(m_T)$) μ-null ($\mathcal{N}(\mu)$) sets are the same. $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
Notation

- \((\Omega, \Sigma, \mu)\) positive finite measure space.
- \(X(\mu)\) be a \(\sigma\)-o.c. Banach function space, \(E\) Banach space.
- \(T : X(\mu) \rightarrow E\) continuous linear operator.
- \(T(\chi_A) = m_T(A), A \in \Sigma\) \(\sigma\)-additive.
- \(L^1(m_T)\) space of \(m_T\)-integrable functions.
- \(I_{m_T} : f \rightarrow \int_{\Omega} f dm_T\) is the integration operator.
- \(T\) is \(\mu\)-determined: the \(m_T\)-null (\(N(m_T)\)) \(\mu\)-null (\(N(\mu)\)) sets are the same.
- \(J_T : X(\mu) \hookrightarrow L^1(m_T)\) inclusion.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \to E$ continuous linear operator.
- $T(\chi_A) = m_T(A), A \in \Sigma$ σ-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $I_{m_T} : f \to \int_{\Omega} f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($\mathcal{N}(m_T)$) μ-null ($\mathcal{N}(\mu)$) sets are the same. $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \to E$ continuous linear operator.
- $T(\chi_A) = m_T(A), A \in \Sigma \sigma$-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $I_{m_T} : f \to \int_\Omega f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($N(m_T)$) μ-null ($N(\mu)$) sets are the same. $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \rightarrow E$ continuous linear operator.
- $T(\chi_A) = m_T(A), A \in \Sigma$ σ-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $I_{m_T} : f \rightarrow \int_{\Omega} f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($\mathcal{N}(m_T)$) μ-null ($\mathcal{N}(\mu)$) sets are the same. $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
Notation

- (Ω, Σ, μ) positive finite measure space.
- $X(\mu)$ be a σ-o.c. Banach function space, E Banach space.
- $T : X(\mu) \to E$ continuous linear operator.
- $T(\chi_A) = m_T(A)$, $A \in \Sigma$ σ-additive.
- $L^1(m_T)$ space of m_T-integrable functions.
- $I_{m_T} : f \to \int_\Omega f dm_T$ is the integration operator.
- T is μ-determined: the m_T-null ($\mathcal{N}(m_T)$) μ-null ($\mathcal{N}(\mu)$) sets are the same. $J_T : X(\mu) \hookrightarrow L^1(m_T)$ inclusion.
1. Every $f \in X(\mu)$ is m_T-integrable and $T(f \chi_A) = \int_A f dm_T$ $A \in \Sigma$.
2. $\mathcal{N}(\mu) \subseteq \mathcal{N}(m_T)$. The linear map J_T is well defined and is continuous with $\|J_T\| = \|T\|$.
3. J_T is injective whenever $\mathcal{N}(\mu) = \mathcal{N}(m_T)$. In this case, $L^1(m_T)$ is a B.f.s. into which $X(\mu)$ is continuously embedded via the map J_T with $T = I_{m_T} \circ J_T$ is the unique continuous linear extension of T to $L^1(m_T)$. That is, the diagram is commutative.
Every $f \in X(\mu)$ is m_T-integrable and $T(f \chi_A) = \int_A f dm_T \ A \in \Sigma$.

$\mathcal{N}(\mu) \subseteq \mathcal{N}(m_T)$. The linear map J_T is well defined and is continuous with $\|J_T\| = \|T\|$.

J_T is injective whenever $\mathcal{N}(\mu) = \mathcal{N}(m_T)$. In this case, $L^1(m_T)$ is a B.f.s. into which $X(\mu)$ is continuously embedded via the map J_T with $T = l_{m_T} \circ J_T$ is the unique continuous linear extension of T to $L^1(m_T)$. That is, the diagram is commutative.
Every $f \in X(\mu)$ is m_T-integrable and $T(f \chi_A) = \int_A f dm_T$ $A \in \Sigma$.

$\mathcal{N}(\mu) \subseteq \mathcal{N}(m_T)$. The linear map J_T is well defined and is continuous with $\|J_T\| = \|T\|$.

J_T is injective whenever $\mathcal{N}(\mu) = \mathcal{N}(m_T)$. In this case, $L^1(m_T)$ is a B.f.s. into which $X(\mu)$ is continuously embedded via the map J_T with $T = I_{m_T} \circ J_T$ is the unique continuous linear extension of T to $L^1(m_T)$. That is, the diagram is commutative.
Every $f \in X(\mu)$ is m_T-integrable and $T(f \chi_A) = \int_A f dm_T$ $A \in \Sigma$.

$\mathcal{N}(\mu) \subseteq \mathcal{N}(m_T)$. The linear map J_T is well defined and is continuous with $\|J_T\| = \|T\|$.

J_T is injective whenever $\mathcal{N}(\mu) = \mathcal{N}(m_T)$. In this case, $L^1(m_T)$ is a B.f.s. into which $X(\mu)$ is continuously embedded via the map J_T with $T = I_{m_T} \circ J_T$ is the unique continuous linear extension of T to $L^1(m_T)$. That is, the diagram is commutative.
The Curbera-Ricker Optimal Domain Theorem asserts that $L^1(m_T)$ is the largest σ-order continuous B.f.s. over (Ω, Σ, μ) into which $X(\mu)$ is continuously embedded and to which T admits an E-valued continuous linear extension.

If we consider $T : X(\mu) \to E$ a compact operator, a natural question raised by E.A. Sánchez Pérez is whether or not T admits a maximal compact linear extension.

If we consider $T : X(\mu) \to E$ a compact operator, a natural question raised by E.A. Sánchez Pérez is whether or not T admits a maximal compact linear extension.

Theorem

Suppose that $X(\mu)$ is a σ-order continuous B.f.s. based on a positive, finite measure space (Ω, Σ, μ) and that $T : X(\mu) \to E$ is a μ-determined, compact linear operator. Then T admits a maximal compact linear extension if and only if the integration operator $I_{m_T} : L^1(m_T) \to E$ is compact.

If we consider $T : X(\mu) \to E$ a compact operator, a natural question raised by E.A. Sánchez Pérez is whether or not T admits a maximal compact linear extension.

Theorem

Suppose that $X(\mu)$ is a σ-order continuous B.f.s. based on a positive, finite measure space (Ω, Σ, μ) and that $T : X(\mu) \to E$ is a μ-determined, weakly compact linear operator. Then T admits a maximal weakly compact linear extension if and only if the integration operator $I_{m_T} : L^1(m_T) \to E$ is weakly compact.

Volterra integral operator

\[(Vf)(t) := \int_0^t f(u) \, du, \quad t \in [0, 1] \quad f \in L^1([0, 1])\]

\[\begin{array}{ccc}
L^1([0, 1]) & \xrightarrow{V} & L^1([0, 1]) \\
J_T & \xrightarrow{\mu} & L^1((1-t) \, dt) \\
L^1(m_V) & \xrightarrow{I_{m_V}} & L^1(m_V) = L^1((1-t) \, dt)
\end{array}\]

\(\mu\) Lebesgue measure on the Borel \(\sigma\)-algebra \(\mathcal{B}([0, 1])\). The operator \(V\) admits a natural extension \(\tilde{V}\) to the space of all functions \(f \in L^0(\mu)\) such that \(f\) is Lebesgue integrable over \([0, u]\) for every \(u \in [0, 1]\) and the function \(u \mapsto \int_0^u f(t) \, dt\) belongs to \(L^1([0, 1])\) in which case \(\tilde{V}(f)(u) = \int_0^u f(t) \, dt\): Via Fubini’s Theorem \(L^1(m_V) = L^1((1-t) \, dt)\) is the maximal \(\sigma\)-order continuous domain. \(V\) is compact and \(I_{m_V}\) is not compact and not weakly compact.
Volterra integral operator

\[(Vf)(t) := \int_0^t f(u)du, \quad t \in [0, 1] \quad f \in L^1([0, 1])\]

\[L^p([0, 1]) \xrightarrow{V} L^p([0, 1])\]

\[L^1(m_V) \xrightarrow{J_T} V \xrightarrow{I_{m_V}} \]

\(\mu\) Lebesgue measure on the Borel \(\sigma\)-algebra \(\mathcal{B}([0, 1])\). Its maximal continuous linear extension is also non-compact but, obviously weakly compact due to reflexivity of the codomain space \(L^p([0, 1])\),

\(V\) is compact and \(I_{m_V}\) is not compact and but it is weakly compact.
Motivation

Which properties of operators can they be extend to their optimal domain?
$L^0(\mu)$

We denote by $L^0(\mu)$ the space of all measurable real functions on Ω, where functions which are equal μ-a.e. are identified. The space $L^0(\mu)$ will be endowed with the μ-a.e. pointwise order, that is, $f \leq g$ if and only if $f \leq g$ μ-a.e. Then, $L^0(\mu)$ is a vector lattice.

Banach function space

Let $X(\mu)$ be a Banach function space related to μ we mean a Banach space $X(\mu) \subset L^0(\mu)$ satisfying that if $|f| \leq |g|$ with $f \in L^0(\mu)$ and $g \in X(\mu)$ then $f \in X(\mu)$ and $\|f\| \leq \|g\|$.
\[L^0(\mu) \]

We denote by \(L^0(\mu) \) the space of all measurable real functions on \(\Omega \), where functions which are equal \(\mu \)-a.e. are identified. The space \(L^0(\mu) \) will be endowed with the \(\mu \)-a.e. pointwise order, that is, \(f \leq g \) if and only if \(f \leq g \) \(\mu \)-a.e. Then, \(L^0(\mu) \) is a vector lattice.

Banach function space

Let \(X(\mu) \) be a Banach function space related to \(\mu \) we mean a Banach space \(X(\mu) \subset L^0(\mu) \) satisfying that if \(|f| \leq |g| \) with \(f \in L^0(\mu) \) and \(g \in X(\mu) \) then \(f \in X(\mu) \) and \(\|f\| \leq \|g\| \).
AM-compact operator

An operator T from a B.f.s. $X(\mu)$ into a Banach lattice E is said to be *AM-compact* if it transforms order bounded subsets of $X(\mu)$ into precompact subsets of E.

Theorem

Let (Ω, Σ, μ) be a positive finite measure space. Let $X(\mu)$ be a σ-order continuous B.f.s. over (Ω, Σ, μ) and E is a Banach space. A μ-determined AM-compact operator $T : X(\mu) \to E$ admits a maximal AM-compact linear extension if and only if the integration operator $I_{m_T} : L^1(m_T) \to E$ is AM-compact.
AM-compact operator

An operator T from a B.f.s. $X(\mu)$ into a Banach lattice E is said to be **AM-compact** if it transforms order bounded subsets of $X(\mu)$ into precompact subsets of E.

Theorem

Let (Ω, Σ, μ) be a positive finite measure space. Let $X(\mu)$ be a σ-order continuous B.f.s. over (Ω, Σ, μ) and E is a Banach space. A μ-determined AM-compact operator $T : X(\mu) \to E$ admits a maximal AM-compact linear extension if and only if the integration operator $I_{m_T} : L^1(m_T) \to E$ is AM-compact.
Sketch of the proof

1. $T : X(\mu) \to E$ μ-determined operator,
2. $1 < p < \infty$, $g \in L^q(m_T)$, $g \geq c\chi_\Omega$, for some $c > 0$, $1/p + 1/q = 1$.
3. $g \cdot L^p(m_T)$ is a σ-order continuous B.f.s. based on (Ω, Σ, μ)

\[\begin{align*}
X(\mu) & \xrightarrow{T} E \\
& \xrightarrow{J_T} L^p(m_T) \\
& \xrightarrow{\alpha_p} L^1(m_T)
\end{align*} \]

Lemma

The operator $I_{m_T}^{(g,p)}$ is AM-compact if and only if $R(m_T) = \{m_T(A) : A \in \Sigma\} = \{T(\chi_A) : A \in \Sigma\}$ of the vector measure $m_T : \Sigma \to E$ is relatively compact.
Sketch of the proof

1. $T : X(\mu) \to E$ μ-determined operator,
2. $1 < p < \infty$, $g \in L^q(m_T)$, $g \geq c\chi_\Omega$, for some $c > 0$, $1/p + 1/q = 1$.
3. $g \cdot L^p(m_T)$ is a σ-order continuous B.f.s. based on (Ω, Σ, μ)

$X(\mu)$ \xrightarrow{T} E

J_T $\xrightarrow{T^{(g,p)}}$ E

$g \cdot L^p(m_T)$ $\xrightarrow{\alpha_p^{(g)}}$ $L^1(m_T)$

Lemma

The operator $I^{(g,p)}_{m_T}$ is AM-compact if and only if $R(m_T) = \{ m_T(A) : A \in \Sigma \} = \{ T(\chi_A) : A \in \Sigma \}$ of the vector measure $m_T : \Sigma \to E$ is relatively compact.
Sketch of the proof

1. $T : X(\mu) \to E$ μ-determined operator,
2. $1 < p < \infty$, $g \in L^q(m_T)$, $g \geq c\chi_\Omega$, for some $c > 0$, $1/p + 1/q = 1$.
3. $g \cdot L^p(m_T)$ is a σ-order continuous B.f.s. based on (Ω, Σ, μ)

Lemma

The operator $I_{m_T}^{(g,p)}$ is AM-compact if and only if

$R(m_T) = \{m_T(A) : A \in \Sigma\} = \{T(\chi_A) : A \in \Sigma\}$ of the vector measure $m_T : \Sigma \to E$ is relatively compact.
Sketch of the proof

1. \iff is obvious.

2. Conversely suppose that I_{m_T} is not AM-compact. $Y(\mu)$ over (Ω, Σ, μ) such that $X(\mu)$ is continuously embedded in $Y(\mu)$ and for which $T_{Y(\mu)} : Y(\mu) \to E$ is an AM-compact linear extension. The continuity of $T_{Y(\mu)}$ implies that $Y(\mu)$ is continuously embedded into $L^1(m_T)$. Since I_{m_T} is not AM-compact and $T_{Y(\mu)}$ is AM-compact we have that $Y(\mu) \subsetneq L^1(m_T)$.

\[
Z(\mu) := Y(\mu) + g \cdot L^p(m_T)
\]

\[
\|f\|_{Z(\mu)} := \inf(\|\phi\|_{Y(\mu)} + \|\psi\|_{g \cdot L^p(m_T)})
\]

Let B be an order bounded subset in $Z(\mu)$ and the proof finish showing that the restriction I_{m_T} to $Z(\mu)$ provides a proper AM-compact linear extension of $T_{Y(\mu)}$.
Sketch of the proof

1. \(\iff \) is obvious.

2. Conversely suppose that \(I_{m_T} \) is not AM-compact. \(Y(\mu) \) over \((\Omega, \Sigma, \mu) \) such that \(X(\mu) \) is continuously embedded in \(Y(\mu) \) and for which \(T_{Y(\mu)} : Y(\mu) \to E \) is an AM-compact linear extension. The continuity of \(T_{Y(\mu)} \) implies that \(Y(\mu) \) is continuously embedded into \(L^1(m_T)_\mu \). Since \(I_{m_T} \) is not AM-compact and \(T_{Y(\mu)} \) is AM-compact we have that \(Y(\mu) \nsubseteq L^1(m_T)_\mu \).

\[
Z(\mu) := Y(\mu) + g \cdot L^p(m_T)
\]

\[
\|f\|_{Z(\mu)} := \inf(\|\phi\|_{Y(\mu)} + \|\psi\|_{g \cdot L^p(m_T)})
\]

Let \(B \) be an order bounded subset in \(Z(\mu) \) and the proof finish showing that the restriction \(I_{m_T} \) to \(Z(\mu) \) provides a proper AM-compact linear extension of \(T_{Y(\mu)} \).
Sketch of the proof

1. \(\Leftarrow \) is obvious.

2. Conversely suppose that \(I_{m_T} \) is not \(AM \)-compact. \(Y(\mu) \) over \((\Omega, \Sigma, \mu) \) such that \(X(\mu) \) is continuously embedded in \(Y(\mu) \) and for which \(T_{Y(\mu)} : Y(\mu) \to E \) is an \(AM \)-compact linear extension. The continuity of \(T_{Y(\mu)} \) implies that \(Y(\mu) \) is continuously embedded into \(L^1(m_T)_\mu \). Since \(I_{m_T} \) is not \(AM \)-compact and \(T_{Y(\mu)} \) is \(AM \)-compact we have that \(Y(\mu) \subseteq L^1(m_T)_\mu \).

\[
Z(\mu) := Y(\mu) + g \cdot L^p(m_T)
\]

\[
\|f\|_{Z(\mu)} := \inf(\|\phi\|_{Y(\mu)} + \|\psi\|_{g \cdot L^p(m_T)})
\]

Let \(B \) be an order bounded subset in \(Z(\mu) \) and the proof finish showing that the restriction \(I_{m_T} \) to \(Z(\mu) \) provides a proper \(AM \)-compact linear extension of \(T_{Y(\mu)} \).
Sketch of the proof

1. \Leftarrow is obvious.

2. Conversely suppose that l_{mT} is not AM-compact. $Y(\mu)$ over (Ω, Σ, μ) such that $X(\mu)$ is continuously embedded in $Y(\mu)$ and for which $T_{Y(\mu)} : Y(\mu) \to E$ is an AM-compact linear extension. The continuity of $T_{Y(\mu)}$ implies that $Y(\mu)$ is continuously embedded into $L^1(m_T)\mu$. Since l_{mT} is not AM-compact and $T_{Y(\mu)}$ is AM-compact we have that $Y(\mu) \not\subseteq L^1(m_T)\mu$.

\[
Z(\mu) := Y(\mu) + g \cdot L^p(m_T)
\]

\[
\|f\|_{Z(\mu)} := \inf(\|\phi\|_{Y(\mu)} + \|\psi\|_{g \cdot L^p(m_T)})
\]

Let B be an order bounded subset in $Z(\mu)$ and the proof finish showing that the restriction l_{mT} to $Z(\mu)$ provides a proper AM-compact linear extension of $T_{Y(\mu)}$.
Sketch of the proof

1. \Leftarrow is obvious.

2. Conversely suppose that I_{m_T} is not AM-compact. $Y(\mu)$ over (Ω, Σ, μ) such that $X(\mu)$ is continuously embedded in $Y(\mu)$ and for which $T_{Y(\mu)} : Y(\mu) \to E$ is an AM-compact linear extension. The continuity of $T_{Y(\mu)}$ implies that $Y(\mu)$ is continuously embedded into $L^1(m_T)\mu$. Since I_{m_T} is not AM-compact and $T_{Y(\mu)}$ is AM-compact we have that $Y(\mu) \subsetneq L^1(m_T)\mu$.

$$Z(\mu) := Y(\mu) + g \cdot L^p(m_T)$$

$$\|f\|_{Z(\mu)} := \inf(\|\phi\|_{Y(\mu)} + \|\psi\|_{g \cdot L^p(m_T)})$$

Let B be an order bounded subset in $Z(\mu)$ and the proof finish showing that the restriction I_{m_T} to $Z(\mu)$ provides a proper AM-compact linear extension of $T_{Y(\mu)}$.

E. Jiménez Fernández (adjimfer@ugr.es)
Dunford-Pettis operator

A linear operator $T : X \rightarrow Y$ between two Banach spaces X, Y is called **Dunford-Pettis** if T sends weakly null sequences from X to norm null sequences in Y. These operators are often also called completely continuous.

Remark

In general for a Dunford-Pettis operator T from a B.f.s $X(\mu)$ into a Banach space E, the subset $\{ T(\chi_A) : A \in \Sigma \}$ is a relatively compact set in E. However the converse is false.
Dunford-Pettis operator

A linear operator $T : X \rightarrow Y$ between two Banach spaces X, Y is called Dunford-Pettis if T sends weakly null sequences from X to norm null sequences in Y. These operators are often also called completely continuous.

Theorem

Let $T : X(\mu) \rightarrow E$ be a μ-determined Dunford-Pettis linear operator where $X(\mu)$ is a σ-order continuous B.f.s. based on (Ω, Σ, μ). Then T admits a maximal Dunford-Pettis linear extension if and only if the integration operator I_{mT} is Dunford-Pettis.

Remark

In general for a Dunford-Pettis operator T from a B.f.s $X(\mu)$ into a Banach space E, the subset $\{ T(\chi_A) : A \in \Sigma \}$ is a relatively compact set in E. However the converse is false.
Dunford-Pettis operator

A linear operator $T : X \to Y$ between two Banach spaces X, Y is called Dunford-Pettis if T sends weakly null sequences from X to norm null sequences in Y. These operators are often also called completely continuous.

Remark

In general for a Dunford-Pettis operator T from a B.f.s $X(\mu)$ into a Banach space E, the subset $\{ T(\chi_A) : A \in \Sigma \}$ is a relatively compact set in E. However the converse is false.
Dunford-Pettis operator

A linear operator \(T : X \to Y \) between two Banach spaces \(X, Y \) is called \textbf{Dunford-Pettis} if \(T \) sends weakly null sequences from \(X \) to norm null sequences in \(Y \). These operators are often also called completely continuous.

Corollary

Let \(X(\mu) \) be a B.f.s. and let \(E \) be a Banach space. If \(T : X(\mu) \to E \) is a \(\mu \)-determined Dunford-Pettis operator then \(T \) is narrow and the integration operator \(I_{m_T} : L^1(m_T)_\mu \to E \) is the maximal \(\mu \)-narrow linear extension.

Remark

In general for a Dunford-Pettis operator \(T \) from a B.f.s \(X(\mu) \) into a Banach space \(E \), the subset \(\{ T(\chi_A) : A \in \Sigma \} \) is a relatively compact set in \(E \). However the converse is false.
Volterra integral operator

\[(V_rf)(t) := \int_0^t f(u)du, \quad t \in [0,1], \quad f \in L^r([0,1]), \quad 1 \leq r \leq \infty\]

For each \(1 \leq r \leq \infty\) the operator \(V_r\) is compact.

Therefore \(V_r\) is Dunford-Pettis.

But \(I_{mV_r}\) is not Dunford-Pettis operator.

\[m_{V_r} : \mathcal{B}([0,1]) \to L^r([0,1]). \quad m_{V_r}(A) = V_r(\chi_A) \text{ for } A \in \mathcal{B}([0,1])\]
Volterra integral operator

\[(V_1 f)(t) := \int_0^t f(u) \, du, \quad t \in [0, 1], \quad f \in L^1([0, 1])\]

\[L^1([0, 1]) \xrightarrow{V_1} L^1([0, 1]) \xrightarrow{J_T} L^1(m_{V_1}) \xrightarrow{l_{m_{V_1}}} L^1([0, 1])\]

\[m_{V_1} : B([0, 1]) \to L^1([0, 1]). \quad m_{V_1}(A) = V_1(\chi_A) \text{ for } A \in B([t, \infty]).\]

The operator \(V_1\) is compact. Therefore \(V_1\) is AM-compact.

But \(l_{m_{V_1}}\) is not AM-compact operator.
Sign function

We define $\Sigma^+ := \{ A \in \Sigma : \mu(A) > 0 \}$. A function $f \in L^0(\mu)$ is called a sign if it takes values in the set $\{-1, 0, 1\}$, and a sign on $A \in \Sigma$ if it is a sign with $\text{supp}f = A$. We say that a sign f is of mean zero if $\int_{\Omega} f d\mu = 0$.
Sign function

We define $\Sigma^+ := \{ A \in \Sigma : \mu(A) > 0 \}$. A function $f \in L^0(\mu)$ is called a sign if it takes values in the set $\{-1, 0, 1\}$, and a sign on $A \in \Sigma$ if it is a sign with $\text{supp} f = A$. We say that a sign f is of mean zero if $\int_\Omega f d\mu = 0$.

Narrow operator

An operator $T : X(\mu) \to E$ is called narrow, where $X(\mu)$ is a B.f.s. and E a Banach space, if for each $A \in \Sigma^+$ and each $\varepsilon > 0$ there exists a mean zero sign f on A such that $\| T(f) \| < \varepsilon$.
Sign function

We define $\Sigma^+ := \{ A \in \Sigma : \mu(A) > 0 \}$. A function $f \in L^0(\mu)$ is called a sign if it takes values in the set $\{-1, 0, 1\}$, and a sign on $A \in \Sigma$ if it is a sign with $\text{supp} f = A$. We say that a sign f is of mean zero if $\int_{\Omega} f d\mu = 0$.

Narrow operator

Let $X(\mu)$ be a non-atomic order complete vector lattice, a linear operator $T : X(\mu) \to E$ is narrow, where E is a Banach space, if for each $f \in X(\mu)^+$ and each $\varepsilon > 0$ there exists some $g \in X(\mu)$ such that $|g| = f$ and $\|T(g)\| < \varepsilon$.

Jiménez Fernández (edjimfer@ugr.es)
Theorem

Let $X(\mu)$ be a σ-order continuous B.f.s. and let E be a Banach space. Let $T : X(\mu) \to E$ be a μ-determined linear operator. Then T is narrow if and only if the integration operator $I_{m_T} : L^1(m_T)_\mu \to E$ is narrow.
Corollary

Let $T : L^1(\mu) \rightarrow E$ be a μ-determined continuous linear operator. Let E be a Banach space with the Radon-Nikodým property. Then the integration operator I_{mT} is narrow and it is the maximal narrow extension.
Sign-embedding

An injective linear operator $T : X(\mu) \rightarrow E$ is called sign-embedding if for some $\delta > 0$ and every sign function $f \in X(\mu)$ then

$$\| T(f) \|_E \geq \delta \| f \|_{X(\mu)}$$

Corollary

Let E be a separable Banach space and $1 \leq p < \infty$. Let $T : L^p(\mu) \rightarrow E$ be a μ-determined narrow operator. Then l_{ImT} is not sign-embed in E.
Remark

Let $X(\mu)$ be a σ-order continuous B.f.s over a non atomic finite measure space $((0,1), \Sigma, \mu)$ and let $T : X(\mu) \to E$ be a μ-determined linear operator. Then the range of every E-valued measure m_T has convex closure then every bounded operator T is narrow.
Corollary

Let $X(\mu)$ be a σ-order continuous B.f.s. over a non atomic measure space (Ω). If the range $R(m_T)$ of every E-valued measure m_T has convex closure being T a μ-determined linear operator then every integrator operator I_{m_T} is the maximal narrow linear extension.

Corollary

Let $1 \leq p < \infty$. If $T : L^p(\mu) \to E$ is a μ-determined absolutely summing operator then T is narrow and the integration operator $I_{m_T} : L^1(m_T)_\mu \to E$ is the maximal narrow linear extension.
corollary

Let $T : L^p(\mu) \to L^r(\mu)$ be a μ-determined linear operator, where $1 \leq p < 2$ and $p < r < \infty$, then:

1. T is narrow.
2. $I_{m_T} : L^1(m_T) \to L^r(\mu)$ is narrow.

corollary

Let $m : \Sigma \to L^r(\mu)$ be a countably vector measure such that exists a continuous inclusion $i : L^p(\mu) \hookrightarrow L^1(m)$ and $1 \leq p < 2$, $p < r < \infty$ then the integration operator $I_m : L^1(m) \to L^r(\mu)$ is narrow.
corollary

Let $T : L^p(\mu) \to c_0$ be a μ-determined linear operator, where $1 \leq p < \infty$:

1. T is narrow.
2. $I_{m_T} : L^1(m_T) \to c_0$ is narrow.

corollary

Let $m : \Sigma \to L^r(\mu)$ be a countably vector measure such that exists a continuous inclusion $i : L^p(\mu) \leftrightarrow L^1(m)$ and $1 \leq p < 2$, $p < r < \infty$ then the integration operator $I_m : L^1(m) \to L^r(\mu)$ is narrow.
corollary

Let \(m : \Sigma \to L^r(\mu) \) be a countably vector measure such that exists a continuous inclusion \(i : L^p(\mu) \leftrightarrow L^1(m) \) and \(1 \leq p < 2, \ p < r < \infty \) then the integration operator \(I_m : L^1(m) \to L^r(\mu) \) is narrow.
THANK YOU FOR YOUR ATTENTION