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Alicante

Juan Miguel Ribera Puchades

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet UA, 15 Nov 2012 1 / 25
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Galbis.

Aim

Our aim is discuss unconditional atomic decompositions on no normable
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Introduction

Outline

1 Introduction

2 Atomic Decompositions

3 Duality

4 Unconditional atomic decompostions

5 Example

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet UA, 15 Nov 2012 3 / 25



Introduction

Definition

Let E be a Hausdorff locally convex space.

Definition

Let {xj}∞j=1 ⊂ E and let {x ′j}∞j=1 ⊂ E ′, we say that ({x ′j}, {xj}) is an
atomic decomposition of E if

x =
∞∑
j=1

x ′j (x) xj , for all x ∈ E ,

the series converging in E .

We denote by ω the space KN endowed by the product topology.
A sequence space is a lcs

∧
such that K(N) ⊂

∧
⊂ ω, this last inclusion

being continuous.
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Introduction

Examples

Example (Leont’ev, 1970’s)

For every convex bounded set, Ω ⊂ C, there exists a sequence
{xj}∞j=1 ⊂ C such that, for every f ∈ H (Ω),

f (z) =
∞∑
j=1

cje
xjz

is uniformly and absolutely convergent on compact sets.

The sequence
{cj}∞j=1 is not unique, therefore it is not a basis.

Korobĕınik, Y. F. and Melikhov, S. N. proved that, if the boundary of Ω is
C 2, there exist {cj}∞j=1 depending continuously of f (i.e. cj := uj (f )
where uj is a linear and continuous operator). Therefore, we obtain an
atomic decomposition.
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Introduction

Examples

Example

Let E be a lcs with a Schauder basis {ej}∞j=1 ⊂ E and denote by
{e ′j}∞j=1 ⊂ E ′ the functional coefficients. Then ({e ′j}, {ej}) is an atomic
decomposition for E such that e ′j (ei ) = δj ,i for all i , j ∈ N.

Example

Let E be a lcs and let P : E → E be a continuous linear projection. If
({x ′j}, {xj}) is an atomic decomposition for E , then ({P ′(x ′j )}, {P(xj)}) is
an atomic decomposition for P (E ).
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Atomic Decompositions

Theorem

From now on E always be a barrelled and complete Hausdorff locally
convex space.

Theorem

The following are equivalent:

1 E admits an atomic decomposition.

2 E is isomorphic to a complemented subspace of a complete sequence
space with the canonical unit vectors as Schauder basis.

3 E is isomorphic to a complemented subspace of a complete sequence
space with Schauder basis.

Theorem

A Fréchet space E admits an atomic decomposition if, and only if, E has
the bounded approximation property.
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Atomic Decompositions

Sketch of the Proof

1)⇒ 2)

We define a injective and continuous linear linear map

U : E −→
∧

x −→ U (x) :=
(

x ′j (x)
)
j
.

Where
∧

:= {α = (αj)j ∈ ω :
∑∞

j=1 αjxj is convergent in E} is a
sequence space endowed with the system of seminorms

Q :=

qp((αj)j) := sup
n

p(
n∑

j=1

αjxj), for all p ∈ cs(E )

 ,

such that (
∧
,Q) is complete.

And S :
∧
−→ E , S((αj)j) :=

∑∞
j=1 αjxj , is a continuous linear map.

From S ◦ U = IE we conclude that U is an isomorphism into its range
U (E ) and U ◦ S is a projection of

∧
onto U (E ) .
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Atomic Decompositions

Perturbation Result

Theorem

Let ({x ′j}, {xj}) be an atomic decomposition of a complete lcs E . Then, if
{yj}∞j=1 is a sequence in E satisfying that ∃p0 ∈ cs(E ) such that for all
p ∈ cs(E ) there is Cp > 0 with:
(i)
∑∞

j=1 |x ′j (x)|p(xj − yj) ≤ p0(x)Cp for each x ∈ E and
(ii) Cp0 can be chosen strictly smaller than 1,

then, there exists {y ′j }∞j=1 a sequence in E ′ such that ({y ′j }, {yj}) is an
atomic decomposition for E .

This should be compared with a result of D́ıaz.
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Atomic Decompositions

Example

Example

By previous result, observe that, if x ′1(x1) 6= 1 the map x →
∑∞

j=2 x ′j (x)xj
is invertible as 1 is not an eigenvalue of the rank one operator
x → x ′1(x)x1.

Hence there exists (y ′j )j ⊂ E ′ such that ((y ′j )j , (xj+1)j) is an atomic
decomposition.

In that case, we can remove an element and still obtain atomic
decompositions.
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Duality

Introduction

Given an atomic decomposition ({x ′j}, {xj}) of E it is rather natural to ask
whether ({xj}, {x ′j}) is an atomic decomposition of E ′.

Lemma

If ({x ′j}, {xj}) is an atomic decomposition of E , then ({xj}, {x ′j}) is an
atomic decomposition of (E ′, σ (E ′,E )).

The question we are going to face is under which conditions ({xj}, {x ′j}) is
an atomic decomposition of (E ′, β (E ′,E )) .
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Duality

Shrinking Atomic Decompositions

We define a linear operator Tn : E → E as Tn (x) :=
∑∞

j=n+1 x ′j (x) xj .

Definition

An atomic decomposition ({x ′j}, {xj}) is shrinking if for all x ′ ∈ E ′,
limn→∞ x ′ ◦ Tn = 0 uniformly on the bounded subsets of E .

Theorem

The following are equivalent:

1 ({x ′j}, {xj}) is a shrinking atomic decomposition of E .

2 ({xj}, {x ′j}) is an atomic decomposition for E ′β.

3 For all x ′ ∈ E ′,
∑∞

j=1 x ′ (xj) x ′j is convergent in E ′β.
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2 ({xj}, {x ′j}) is an atomic decomposition for E ′β.

3 For all x ′ ∈ E ′,
∑∞

j=1 x ′ (xj) x ′j is convergent in E ′β.
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Duality

Boundedly Complete Atomic Decompositions

Definition

An atomic decomposition ({x ′j}, {xj}) is boundedly complete if for all
x ′′ ∈ E ′′β , the series

∑∞
j=1 x ′j (x ′′) xj converges in E .

Proposition

1 Let {ej}∞j=1 be a Schauder basis of E ; ({e ′j}, {ej}) is a boundedly
complete atomic decomposition if and only if {ej}∞j=1 is a boundedly
complete Schauder basis (i.e. for every {αj}∞j=1 ⊂ K such that

(
∑k

j=1 αjej)k is bounded, then
∑∞

j=1 αjej is convergent).

2 If ({x ′j}, {xj}) is a boundedly complete atomic decomposition for E
with E ′′β barrelled, then E is complemented in its bidual E ′′β .

Proposition

If ({x ′j}, {xj}) is shrinking and boundedly complete atomic decomposition
for E , then E is reflexive.
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Unconditional atomic decompostions

Definition

Definition

An atomic decomposition ({x ′j}, {xj}) for a lcs E is said to be
unconditional if for every x ∈ E we have x =

∑∞
j=1 x ′j (x) xj with

unconditional convergence.

McArthur, Retherford, 1969

If a series
∑∞

j=1 xj converges unconditionally, then, for every bounded
sequence of scalars {aj}, the series

∑∞
j=1 ajxj converges and the operator

`∞ −→ E
{aj} −→

∑∞
j=1 ajxj ;

is a continuous linear operator.
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Unconditional atomic decompostions

Theorem

Theorem

The following are equivalent:

1 E admits an unconditional atomic decomposition.

2 E is isomorphic to a complemented subspace of a complete sequence
space with the canonical unit vectors as unconditional Schauder basis.

3 E is isomorphic to a complemented subspace of a complete sequence
space with unconditional Schauder basis.
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Unconditional atomic decompostions

James’ type theorems

Theorem

Let E be a Fréchet space which admits an unconditional atomic
decomposition ({x ′j}, {xj}). Then, ({x ′j}, {xj}) is shrinking if and only if E
does not contain a copy of `1.

If ({x ′j}, {xj}) is shrinking, E ′β is separable. Therefore E contains no
subspace isomorphic to `1.

We know that ({xj}, {x ′j}) is an atomic decomposition of
(E ′, σ (E ′,E )) and we prove that it is unconditional. By Orlicz-Pettis’
Theorem it is µ (E ′,E )-unconditionally convergent to x ′. By a result
of Bonet and Lindström in 1993, if E does not contain a copy of `1
then every µ (E ′,E )-null sequence in E ′ is strongly convergent to zero.

Theorem

This result can be extended to boundedly retractive (LF )-spaces.
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Unconditional atomic decompostions

James’ type theorems

Theorem

If E admits an unconditional atomic decomposition ({x ′j}, {xj}), then,
({x ′j}, {xj}) is boundedly complete if and only if E does not contain a copy
of c0.

If we suppose that E contains a copy of c0, there exists a projection
P such that P (E ) ' c0. Then, c0 is complemented in its bidual l∞, a
contradiction.

Suppose that ({x ′j}, {xj}) is not boundedly complete, then there exists
U, a 0-neighborhood, and a sequence {yj} such that pU (yj) ≥ 1 and
(yj)j converges to 0 in the topology σ (E ,E ′), a contradiction.
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Unconditional atomic decompostions

James’ type theorems

Theorem

If E admits an unconditional atomic decomposition ({x ′j}, {xj}), then,
({x ′j}, {xj}) is boundedly complete if and only if E does not contain a copy
of c0.

If we suppose that E contains a copy of c0, there exists a projection
P such that P (E ) ' c0. Then, c0 is complemented in its bidual l∞, a
contradiction.

Suppose that ({x ′j}, {xj}) is not boundedly complete, then there exists
U, a 0-neighborhood, and a sequence {yj} such that pU (yj) ≥ 1 and
(yj)j converges to 0 in the topology σ (E ,E ′), a contradiction.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet UA, 15 Nov 2012 20 / 25
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Example

An atomic decomposition on the space C∞ (K )

Let K be a compact set in Rp, p ≥ 1, with
◦
K 6= ∅ such that K =

◦
K .

Let C∞ (K ) := {f ∈ C∞(
◦
K ) : f and all its partial derivatives admit

continuous extension to K}.
The Fréchet space topology in C∞ (K ) is defined by the seminorms:

qn (f ) := sup
{∣∣∣f (α) (x)

∣∣∣ : x ∈ K , |α| ≤ n
}
, n ∈ N0.

Remark

No system of exponentials can be a basis in C∞ ([0, 1]).
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Example

An atomic decomposition on the space C∞ (K )

Theorem

Let us assume that there exists a continuous linear extension operator
T : C∞ (K )→ C∞ (Rp). Then there are sequences

(
λj
)
⊂ Rp and

(uj) ∈ C∞ (K )′ such that ({uj} , {e2πix ·λ
j}) is an atomic decomposition for

C∞ (K ).

Let M > 0 such that K ⊂ [−M,M]p

Choosing φ ∈ D ([−2M, 2M]p) such that φ ≡ 1 on a neighborhood of
[−M,M]p.

Let f ∈ C∞ (K ) we define Hf = φ (T (f )) ∈ D (]−2M, 2M[p).

Then we take uj (f ) = aj (Hf ).

The atomic decomposition of C∞ (K ) is shrinking and boundedly
complete since C∞ (K ) is a Montel space.
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Let M > 0 such that K ⊂ [−M,M]p

Choosing φ ∈ D ([−2M, 2M]p) such that φ ≡ 1 on a neighborhood of
[−M,M]p.

Let f ∈ C∞ (K ) we define Hf = φ (T (f )) ∈ D (]−2M, 2M[p).

Then we take uj (f ) = aj (Hf ).

The atomic decomposition of C∞ (K ) is shrinking and boundedly
complete since C∞ (K ) is a Montel space.
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