Unconditional atomic decompositions in Fréchet spaces

XI Encuentro de Análisis Funcional Alicante -Murcia - València Alicante

Juan Miguel Ribera Puchades

< A i

UA, 15 Nov 2012

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Deco

om. Decomp. in Fréchet

Aim

Our aim is discuss unconditional atomic decompositions on no normable Fréchet Spaces.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

< 47 >

2 / 25

Aim

Our aim is discuss unconditional atomic decompositions on no normable Fréchet Spaces.

Atomic Decompositions have been investigated by Casazza, Gröchenig,

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

Aim

Our aim is discuss unconditional atomic decompositions on no normable Fréchet Spaces.

Atomic Decompositions have been investigated by Casazza, Gröchenig, Carando, Lassalle, Schmidberg,

Aim

Our aim is discuss unconditional atomic decompositions on no normable Fréchet Spaces.

Atomic Decompositions have been investigated by Casazza, Gröchenig, Carando, Lassalle, Schmidberg, Korobeĭnik, Taskinen and others.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

Outline

1 Introduction

2 Atomic Decompositions

3 Duality

We are all the set of the set of

5 Example

Let E be a Hausdorff locally convex space.

Definition

Let E be a Hausdorff locally convex space.

Definition

Let $\{x_j\}_{j=1}^{\infty} \subset E$ and let $\{x'_j\}_{j=1}^{\infty} \subset E'$, we say that $(\{x'_j\}, \{x_j\})$ is an atomic decomposition of E if

$$x = \sum_{j=1}^{\infty} x'_j(x) x_j, \quad ext{ for all } x \in E,$$

the series converging in E.

Definition

Let E be a Hausdorff locally convex space.

Definition

Let $\{x_j\}_{j=1}^{\infty} \subset E$ and let $\{x'_j\}_{j=1}^{\infty} \subset E'$, we say that $(\{x'_j\}, \{x_j\})$ is an atomic decomposition of E if

$$x = \sum_{j=1}^{\infty} x'_j(x) x_j,$$
 for all $x \in E$,

the series converging in E.

We denote by ω the space $\mathbb{K}^{\mathbb{N}}$ endowed by the product topology.

/ 25

Definition

Let E be a Hausdorff locally convex space.

Definition

Let $\{x_j\}_{j=1}^{\infty} \subset E$ and let $\{x'_j\}_{j=1}^{\infty} \subset E'$, we say that $(\{x'_j\}, \{x_j\})$ is an atomic decomposition of E if

$$x = \sum_{j=1}^{\infty} x'_j(x) x_j, \quad ext{ for all } x \in E,$$

the series converging in E.

We denote by ω the space $\mathbb{K}^{\mathbb{N}}$ endowed by the product topology. A sequence space is a lcs \bigwedge such that $\mathbb{K}^{(\mathbb{N})} \subset \bigwedge \subset \omega$, this last inclusion being continuous.

Introduction

Examples

Example (Leont'ev, 1970's)

For every convex bounded set, $\Omega \subset \mathbb{C}$, there exists a sequence $\{x_j\}_{i=1}^{\infty} \subset \mathbb{C}$ such that, for every $f \in \mathcal{H}(\Omega)$,

$$f\left(z
ight)=\sum_{j=1}^{\infty}c_{j}e^{x_{j}z}$$

is uniformly and absolutely convergent on compact sets.

5 / 25

Example (Leont'ev, 1970's)

For every convex bounded set, $\Omega \subset \mathbb{C}$, there exists a sequence $\{x_j\}_{i=1}^{\infty} \subset \mathbb{C}$ such that, for every $f \in \mathcal{H}(\Omega)$,

$$f\left(z\right) = \sum_{j=1}^{\infty} c_j e^{x_j z}$$

is uniformly and absolutely convergent on compact sets. The sequence $\{c_j\}_{j=1}^{\infty}$ is not unique, therefore it is not a basis.

5 / 25

Example (Leont'ev, 1970's)

For every convex bounded set, $\Omega \subset \mathbb{C}$, there exists a sequence $\{x_j\}_{i=1}^{\infty} \subset \mathbb{C}$ such that, for every $f \in \mathcal{H}(\Omega)$,

$$f\left(z\right) = \sum_{j=1}^{\infty} c_j e^{x_j z}$$

is uniformly and absolutely convergent on compact sets. The sequence $\{c_j\}_{j=1}^{\infty}$ is not unique, therefore it is not a basis.

Korobeĭnik, Y. F. and Melikhov, S. N. proved that, if the boundary of Ω is C^2 , there exist $\{c_j\}_{j=1}^{\infty}$ depending continuously of f (i.e. $c_j := u_j(f)$ where u_j is a linear and continuous operator). Therefore, we obtain an atomic decomposition.

Example

Let *E* be a lcs with a Schauder basis $\{e_j\}_{j=1}^{\infty} \subset E$ and denote by $\{e'_j\}_{j=1}^{\infty} \subset E'$ the functional coefficients. Then $(\{e'_j\}, \{e_j\})$ is an atomic decomposition for *E* such that $e'_i(e_i) = \delta_{j,i}$ for all $i, j \in \mathbb{N}$.

Example

Let *E* be a lcs with a Schauder basis $\{e_j\}_{j=1}^{\infty} \subset E$ and denote by $\{e'_j\}_{j=1}^{\infty} \subset E'$ the functional coefficients. Then $(\{e'_j\}, \{e_j\})$ is an atomic decomposition for *E* such that $e'_i(e_i) = \delta_{j,i}$ for all $i, j \in \mathbb{N}$.

Example

Let *E* be a lcs and let $P : E \to E$ be a continuous linear projection. If $(\{x'_j\}, \{x_j\})$ is an atomic decomposition for *E*, then $(\{P'(x'_j)\}, \{P(x_j)\})$ is an atomic decomposition for P(E).

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

Introduction

Atomic Decompositions

3 Duality

4 Unconditional atomic decompositons

5 Example

From now on E always be a barrelled and complete Hausdorff locally convex space.

< 67 ►

From now on E always be a barrelled and complete Hausdorff locally convex space.

Theorem

The following are equivalent:

@ E admits an atomic decomposition.

From now on E always be a barrelled and complete Hausdorff locally convex space.

Theorem

The following are equivalent:

- **@** *E* admits an atomic decomposition.
- *E* is isomorphic to a complemented subspace of a complete sequence space with the canonical unit vectors as Schauder basis.

From now on E always be a barrelled and complete Hausdorff locally convex space.

Theorem

The following are equivalent:

- **@** *E* admits an atomic decomposition.
- *E* is isomorphic to a complemented subspace of a complete sequence space with the canonical unit vectors as Schauder basis.
- E is isomorphic to a complemented subspace of a complete sequence space with Schauder basis.

From now on E always be a barrelled and complete Hausdorff locally convex space.

Theorem

The following are equivalent:

- Ø E admits an atomic decomposition.
- E is isomorphic to a complemented subspace of a complete sequence space with the canonical unit vectors as Schauder basis.
- E is isomorphic to a complemented subspace of a complete sequence space with Schauder basis.

Theorem

A Fréchet space E admits an atomic decomposition if, and only if, E has the bounded approximation property.

1) \Rightarrow 2)

• We define a injective and continuous linear linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \left(x'_j(x) \right)_j. \end{array}$$

1) \Rightarrow 2)

• We define a injective and continuous linear linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \left(x'_j(x) \right)_j. \end{array}$$

Where $\bigwedge := \{ \alpha = (\alpha_j)_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E \}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \left\{ q_p((\alpha_j)_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E) \right\},$$

such that (\bigwedge, \mathcal{Q}) is complete.

1) \Rightarrow 2)

• We define a injective and continuous linear linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \left(x'_j(x) \right)_j. \end{array}$$

Where $\bigwedge := \{ \alpha = (\alpha_j)_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E \}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \left\{ q_p((\alpha_j)_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E) \right\},\$$

such that (\bigwedge, \mathcal{Q}) is complete.

• And $S : \bigwedge \longrightarrow E$, $S((\alpha_j)_j) := \sum_{j=1}^{\infty} \alpha_j x_j$, is a continuous linear map.

1) \Rightarrow 2)

• We define a injective and continuous linear linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \left(x'_j(x) \right)_j. \end{array}$$

Where $\bigwedge := \{ \alpha = (\alpha_j)_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E \}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \left\{ q_p((\alpha_j)_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E) \right\},\$$

such that (\bigwedge, \mathcal{Q}) is complete.

- And $S : \bigwedge \longrightarrow E$, $S((\alpha_j)_j) := \sum_{j=1}^{\infty} \alpha_j x_j$, is a continuous linear map.
- From $S \circ U = I_E$ we conclude that U is an isomorphism into its range U(E)

1) \Rightarrow 2)

• We define a injective and continuous linear linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \left(x'_j(x) \right)_j. \end{array}$$

Where $\bigwedge := \{ \alpha = (\alpha_j)_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E \}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \left\{ q_p((\alpha_j)_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E) \right\},$$

such that (\bigwedge, \mathcal{Q}) is complete.

- And $S : \bigwedge \longrightarrow E$, $S((\alpha_j)_j) := \sum_{j=1}^{\infty} \alpha_j x_j$, is a continuous linear map.
- From $S \circ U = I_E$ we conclude that U is an isomorphism into its range U(E) and $U \circ S$ is a projection of \bigwedge onto U(E).

9 / 25

Perturbation Result

Theorem

Let $(\{x'_j\}, \{x_j\})$ be an atomic decomposition of a complete lcs E. Then, if $\{y_j\}_{j=1}^{\infty}$ is a sequence in E satisfying that $\exists p_0 \in cs(E)$ such that for all $p \in cs(E)$ there is $C_p > 0$ with: (i) $\sum_{j=1}^{\infty} |x'_j(x)| p(x_j - y_j) \le p_0(x) C_p$ for each $x \in E$ and (ii) C_{p_0} can be chosen strictly smaller than 1,

Perturbation Result

Theorem

Let $(\{x'_j\}, \{x_j\})$ be an atomic decomposition of a complete lcs E. Then, if $\{y_j\}_{j=1}^{\infty}$ is a sequence in E satisfying that $\exists p_0 \in cs(E)$ such that for all $p \in cs(E)$ there is $C_p > 0$ with: (i) $\sum_{j=1}^{\infty} |x'_j(x)| p(x_j - y_j) \leq p_0(x) C_p$ for each $x \in E$ and (ii) C_{p_0} can be chosen strictly smaller than 1, then, there exists $\{y'_j\}_{j=1}^{\infty}$ a sequence in E' such that $(\{y'_j\}, \{y_j\})$ is an atomic decomposition for E.

Perturbation Result

Theorem

Let $(\{x'_j\}, \{x_j\})$ be an atomic decomposition of a complete lcs E. Then, if $\{y_j\}_{j=1}^{\infty}$ is a sequence in E satisfying that $\exists p_0 \in cs(E)$ such that for all $p \in cs(E)$ there is $C_p > 0$ with: (i) $\sum_{j=1}^{\infty} |x'_j(x)| p(x_j - y_j) \leq p_0(x) C_p$ for each $x \in E$ and (ii) C_{p_0} can be chosen strictly smaller than 1, then, there exists $\{y'_j\}_{j=1}^{\infty}$ a sequence in E' such that $(\{y'_j\}, \{y_j\})$ is an atomic decomposition for E.

This should be compared with a result of Díaz.

Example

By previous result, observe that, if $x'_1(x_1) \neq 1$ the map $x \to \sum_{j=2}^{\infty} x'_j(x)x_j$ is invertible as 1 is not an eigenvalue of the rank one operator $x \to x'_1(x)x_1$.

Example

By previous result, observe that, if $x'_1(x_1) \neq 1$ the map $x \to \sum_{j=2}^{\infty} x'_j(x)x_j$ is invertible as 1 is not an eigenvalue of the rank one operator $x \to x'_1(x)x_1$.

Hence there exists $(y'_j)_j \subset E'$ such that $((y'_j)_j, (x_{j+1})_j)$ is an atomic decomposition.

Example

By previous result, observe that, if $x'_1(x_1) \neq 1$ the map $x \to \sum_{j=2}^{\infty} x'_j(x)x_j$ is invertible as 1 is not an eigenvalue of the rank one operator $x \to x'_1(x)x_1$.

Hence there exists $(y'_j)_j \subset E'$ such that $((y'_j)_j, (x_{j+1})_j)$ is an atomic decomposition.

In that case, we can remove an element and still obtain atomic decompositions.

Outline

1) Introduction

2 Atomic Decompositions

3 Duality

We are all the set of the set of

5 Example

Given an atomic decomposition $(\{x'_j\}, \{x_j\})$ of *E* it is rather natural to ask whether $(\{x_j\}, \{x'_i\})$ is an atomic decomposition of *E'*.

Given an atomic decomposition $(\{x'_j\}, \{x_j\})$ of E it is rather natural to ask whether $(\{x_j\}, \{x'_j\})$ is an atomic decomposition of E'.

Lemma

If $(\{x_j'\}, \{x_j\})$ is an atomic decomposition of E, then $(\{x_j\}, \{x_j'\})$ is an atomic decomposition of $(E', \sigma(E', E))$.
Given an atomic decomposition $(\{x'_j\}, \{x_j\})$ of E it is rather natural to ask whether $(\{x_j\}, \{x'_j\})$ is an atomic decomposition of E'.

Lemma

If $(\{x'_j\}, \{x_j\})$ is an atomic decomposition of E, then $(\{x_j\}, \{x'_j\})$ is an atomic decomposition of $(E', \sigma(E', E))$.

The question we are going to face is under which conditions $(\{x_j\}, \{x'_j\})$ is an atomic decomposition of $(E', \beta(E', E))$.

Shrinking Atomic Decompositions

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{i=n+1}^{\infty} x'_i(x) x_i$.

Definition

An atomic decomposition $(\{x'_i\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of *E*.

Shrinking Atomic Decompositions

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{i=n+1}^{\infty} x'_i(x) x_i$.

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of E.

Theorem

The following are equivalent:

• $(\{x'_i\}, \{x_j\})$ is a shrinking atomic decomposition of *E*.

Shrinking Atomic Decompositions

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{i=n+1}^{\infty} x'_i(x) x_i$.

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of E.

Theorem

The following are equivalent:

- **(** $\{x'_i\}, \{x_j\}$) is a shrinking atomic decomposition of *E*.
- **2** $(\{x_j\}, \{x'_i\})$ is an atomic decomposition for E'_{β} .

Shrinking Atomic Decompositions

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{i=n+1}^{\infty} x'_i(x) x_i$.

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of E.

Theorem

The following are equivalent:

- **(** $\{x'_i\}, \{x_j\}$) is a shrinking atomic decomposition of *E*.
- **2** $(\{x_j\}, \{x'_i\})$ is an atomic decomposition for E'_{β} .
- So For all $x' \in E'$, $\sum_{j=1}^{\infty} x'(x_j) x'_j$ is convergent in E'_{β} .

Boundedly Complete Atomic Decompositions

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_{\beta}$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Juan Miguel Ribera Puchades (UPV) Une. Atom. Decomp. in Fréchet

Boundedly Complete Atomic Decompositions

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_{\beta}$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Proposition

Let {e_j}_{j=1}[∞] be a Schauder basis of E; ({e'_j}, {e_j}) is a boundedly complete atomic decomposition if and only if {e_j}_{j=1}[∞] is a boundedly complete Schauder basis (i.e. for every {α_j}_{j=1}[∞] ⊂ K such that (∑_{j=1}^k α_je_j)_k is bounded, then ∑_{j=1}[∞] α_je_j is convergent).

Boundedly Complete Atomic Decompositions

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_{\beta}$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Proposition

- Let {e_j}[∞]_{j=1} be a Schauder basis of E; ({e'_j}, {e_j}) is a boundedly complete atomic decomposition if and only if {e_j}[∞]_{j=1} is a boundedly complete Schauder basis (i.e. for every {α_j}[∞]_{j=1} ⊂ K such that (∑^k_{j=1} α_je_j)_k is bounded, then ∑[∞]_{j=1} α_je_j is convergent).
- If ({x_j'}, {x_j}) is a boundedly complete atomic decomposition for E with E^{''}_β barrelled, then E is complemented in its bidual E^{''}_β.

Boundedly Complete Atomic Decompositions

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_{\beta}$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Proposition

- Let {e_j}_{j=1}[∞] be a Schauder basis of E; ({e'_j}, {e_j}) is a boundedly complete atomic decomposition if and only if {e_j}_{j=1}[∞] is a boundedly complete Schauder basis (i.e. for every {α_j}_{j=1}[∞] ⊂ K such that (∑_{j=1}^k α_je_j)_k is bounded, then ∑_{j=1}[∞] α_je_j is convergent).
- If ({x_j'}, {x_j}) is a boundedly complete atomic decomposition for E with E^{''}_β barrelled, then E is complemented in its bidual E^{''}_β.

Proposition

If $(\{x'_j\}, \{x_j\})$ is shrinking and boundedly complete atomic decomposition for *E*, then *E* is reflexive.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréch

Introduction

2 Atomic Decompositions

3 Duality

Unconditional atomic decompositions

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Préchet

Definition

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ for a lcs *E* is said to be *unconditional* if for every $x \in E$ we have $x = \sum_{j=1}^{\infty} x'_j(x) x_j$ with unconditional convergence.

Juan Miguel Ribera Puchades (UPV) Une. Atom. Decomp. in Fréchet

Definition

Definition

An atomic decomposition $(\{x'_j\}, \{x_j\})$ for a lcs *E* is said to be *unconditional* if for every $x \in E$ we have $x = \sum_{j=1}^{\infty} x'_j(x) x_j$ with unconditional convergence.

McArthur, Retherford, 1969

If a series $\sum_{j=1}^{\infty} x_j$ converges unconditionally, then, for every bounded sequence of scalars $\{a_j\}$, the series $\sum_{j=1}^{\infty} a_j x_j$ converges and the operator

$$\begin{array}{rccc} \ell_{\infty} & \longrightarrow & \mathsf{E} \\ \{\mathsf{a}_j\} & \longrightarrow & \sum_{j=1}^{\infty} \mathsf{a}_j \mathsf{x}_j; \end{array}$$

is a continuous linear operator.

Theorem

The following are equivalent:

@ *E* admits an unconditional atomic decomposition.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

Theorem

Theorem

The following are equivalent:

- Ø E admits an unconditional atomic decomposition.
- E is isomorphic to a complemented subspace of a complete sequence space with the canonical unit vectors as unconditional Schauder basis.

Theorem

Theorem

The following are equivalent:

- Ø E admits an unconditional atomic decomposition.
- E is isomorphic to a complemented subspace of a complete sequence space with the canonical unit vectors as unconditional Schauder basis.
- E is isomorphic to a complemented subspace of a complete sequence space with unconditional Schauder basis.

Unconditional atomic decompositons

James' type theorems

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

UA. 15 Nov 2012

Unconditional atomic decompositons

James' type theorems

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

• If $(\{x'_i\}, \{x_j\})$ is shrinking, E'_{β} is separable.

Unconditional atomic decompositons

James' type theorems

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

If ({x_j'}, {x_j}) is shrinking, E_β' is separable. Therefore E contains no subspace isomorphic to ℓ₁.

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

- If $(\{x'_j\}, \{x_j\})$ is shrinking, E'_{β} is separable. Therefore E contains no subspace isomorphic to ℓ_1 .
- We know that ({x_j}, {x'_j}) is an atomic decomposition of (E', σ (E', E)) and we prove that it is unconditional.

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

- If $(\{x'_j\}, \{x_j\})$ is shrinking, E'_{β} is separable. Therefore E contains no subspace isomorphic to ℓ_1 .
- We know that ({x_j}, {x'_j}) is an atomic decomposition of (E', σ (E', E)) and we prove that it is unconditional. By Orlicz-Pettis' Theorem it is μ (E', E)-unconditionally convergent to x'.

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

- If ({x_j'}, {x_j}) is shrinking, E_β' is separable. Therefore E contains no subspace isomorphic to ℓ₁.
- We know that ({x_j}, {x'_j}) is an atomic decomposition of (E', σ (E', E)) and we prove that it is unconditional. By Orlicz-Pettis' Theorem it is μ (E', E)-unconditionally convergent to x'. By a result of Bonet and Lindström in 1993, if E does not contain a copy of l₁ then every μ (E', E)-null sequence in E' is strongly convergent to zero.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

19 / 25

Theorem

Let *E* be a Fréchet space which admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

- If ({x_j'}, {x_j}) is shrinking, E_β' is separable. Therefore E contains no subspace isomorphic to ℓ₁.
- We know that ({x_j}, {x'_j}) is an atomic decomposition of (E', σ (E', E)) and we prove that it is unconditional. By Orlicz-Pettis' Theorem it is μ (E', E)-unconditionally convergent to x'. By a result of Bonet and Lindström in 1993, if E does not contain a copy of l₁ then every μ (E', E)-null sequence in E' is strongly convergent to zero.

Theorem

This result can be extended to boundedly retractive (LF)-spaces.

Juan Miguel Ribera Puchades (UPV) Unc. Atom

comp. in Fréchet

Theorem

If *E* admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

UA. 15 Nov 2012

Theorem

If *E* admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

• If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$.

Theorem

If *E* admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

• If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$. Then, c_0 is complemented in its bidual l_{∞} , a contradiction.

Theorem

If *E* admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

- If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$. Then, c_0 is complemented in its bidual l_{∞} , a contradiction.
- Suppose that $(\{x'_i\}, \{x_j\})$ is not boundedly complete,

Theorem

If *E* admits an unconditional atomic decomposition $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

- If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$. Then, c_0 is complemented in its bidual l_{∞} , a contradiction.
- Suppose that $(\{x'_j\}, \{x_j\})$ is not boundedly complete, then there exists U, a 0-neighborhood, and a sequence $\{y_j\}$ such that $p_U(y_j) \ge 1$ and $(y_j)_j$ converges to 0 in the topology $\sigma(E, E')$, a contradiction.

Outline

Introduction

2 Atomic Decompositions

3 Duality

4 Unconditional atomic decompositions

5 Example

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

An atomic decomposition on the space $C^{\infty}(K)$

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\overset{\circ}{K} \neq \emptyset$ such that $K = \overset{\circ}{K}$.

Juan Miguel Ribera Puchades (UPV) Une. Atom. Decomp. in Fréchet

UA, 15 Nov 2012

An atomic decomposition on the space $C^{\infty}(K)$

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\overset{\circ}{K} \neq \emptyset$ such that $K = \overset{\circ}{K}$. Let $C^{\infty}(K) := \{f \in C^{\infty}(\overset{\circ}{K}) : f \text{ and all its partial derivatives admit continuous extension to <math>K\}$.

UA, 15 Nov 2012

An atomic decomposition on the space $C^{\infty}(K)$

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\mathring{K} \ne \emptyset$ such that $K = \mathring{K}$. Let $C^{\infty}(K) := \{f \in C^{\infty}(\mathring{K}) : f \text{ and all its partial derivatives admit continuous extension to <math>K\}$. The Except space tanglams in $C^{\infty}(K)$ is defined by the comparence.

The Fréchet space topology in $C^{\infty}(K)$ is defined by the seminorms:

$$q_n(f) := \sup \left\{ \left| f^{(\alpha)}(x) \right| : x \in K, \ |\alpha| \le n \right\}, n \in \mathbb{N}_0.$$

An atomic decomposition on the space $C^{\infty}(K)$

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\mathring{K} \ne \emptyset$ such that $K = \mathring{K}$. Let $C^{\infty}(K) := \{f \in C^{\infty}(\mathring{K}) : f \text{ and all its partial derivatives admit continuous extension to <math>K\}$.

The Fréchet space topology in $C^{\infty}(K)$ is defined by the seminorms:

$$q_n(f) := \sup \left\{ \left| f^{(\alpha)}(x) \right| : x \in K, \ |\alpha| \le n \right\}, n \in \mathbb{N}_0.$$

UA. 15 Nov 2012

Remark

No system of exponentials can be a basis in $C^{\infty}([0,1])$.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet

An atomic decomposition on the space $C^{\infty}(K)$

Theorem

Let us assume that there exists a continuous linear extension operator $T : C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$. Then there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is an atomic decomposition for $C^{\infty}(K)$.

UA. 15 Nov 2012

An atomic decomposition on the space $C^{\infty}(K)$

Theorem

Let us assume that there exists a continuous linear extension operator $T : C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$. Then there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is an atomic decomposition for $C^{\infty}(K)$.

• Let M > 0 such that $K \subset [-M, M]^p$

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp. in Fréchet UA

An atomic decomposition on the space $C^{\infty}(K)$

Theorem

Let us assume that there exists a continuous linear extension operator $T : C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$. Then there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is an atomic decomposition for $C^{\infty}(K)$.

- Let M > 0 such that $K \subset [-M, M]^p$
- Choosing $\phi \in \mathcal{D}([-2M, 2M]^p)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^p$.

An atomic decomposition on the space $C^{\infty}(K)$

Theorem

Let us assume that there exists a continuous linear extension operator $T : C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$. Then there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is an atomic decomposition for $C^{\infty}(K)$.

- Let M > 0 such that $K \subset [-M, M]^p$
- Choosing $\phi \in \mathcal{D}([-2M, 2M]^p)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^p$.
- Let $f \in C^{\infty}(K)$ we define $Hf = \phi(T(f)) \in \mathcal{D}(]-2M, 2M[^{p})$.
Example

An atomic decomposition on the space $C^{\infty}(K)$

Theorem

Let us assume that there exists a continuous linear extension operator $T : C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$. Then there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is an atomic decomposition for $C^{\infty}(K)$.

- Let M > 0 such that $K \subset [-M, M]^p$
- Choosing $\phi \in \mathcal{D}([-2M, 2M]^p)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^p$.
- Let $f \in C^{\infty}(K)$ we define $Hf = \phi(T(f)) \in \mathcal{D}(]-2M, 2M[^{p})$.
- Then we take $u_j(f) = a_j(Hf)$.

Example

An atomic decomposition on the space $C^{\infty}(K)$

Theorem

Let us assume that there exists a continuous linear extension operator $T : C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$. Then there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is an atomic decomposition for $C^{\infty}(K)$.

- Let M > 0 such that $K \subset [-M, M]^p$
- Choosing $\phi \in \mathcal{D}([-2M, 2M]^p)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^p$.
- Let $f \in C^{\infty}(K)$ we define $Hf = \phi(T(f)) \in \mathcal{D}(]-2M, 2M[^{p})$.
- Then we take $u_j(f) = a_j(Hf)$.

The atomic decomposition of $C^{\infty}(K)$ is shrinking and boundedly complete since $C^{\infty}(K)$ is a Montel space.

Juan Miguel Ribera Puchades (UPV) Unc. Atom. Decomp

UA, 15 Nov 2012 23 /

- Bonet, José and Fernández, Carmen and Galbis, Antonio and Ribera, Juan Miguel Shrinking and boundedly complete atomic decompositions in Fréchet spaces, 2012 (*Preprint*)
- Carando, Daniel and Lassalle, Silvia Duality, reflexivity and atomic decompositions in Banach spaces, Studia Math. 191 (2009), 67–80.
- Casazza, Pete and Christensen, Ole and Stoeva, Diana T. Frame expansions in separable Banach spaces, J. Math. Anal. Appl. 307 (2005), 710–723.
- Korobeĭnik, Yu. F. On absolutely representing systems in spaces of infinitely differentiable functions, J. Math. Anal. Appl. 139 (2000), 175–188.

Thanks for your attention

HL SWIEL