Some generalizations of Burnside’s Theorem

Yangming Li

Guangdong University of Education, Guangzhou

Valencia, 17 Feb., 2014
Outline

1. Notations
2. Background
3. Generalization I of Burnside Theorem
4. Generalization II of Burnside Theorem
5. Generalization III of Burnside Theorem
6. Final Remark
Notations

- All groups considered in this talk are finite;
- \(G \) always denotes a finite group;
- \(\pi(G) \) denotes the set of all primes dividing the order of \(G \);
- Suppose that \(p \) is a prime in \(\pi(G) \). \(O^p(G) \) is the subgroup of \(G \) generated by all \(p' \)-elements of \(G \);
- \(Z_k(G) \) is the \(k \)-th center of \(G \), \(k \geq 1 \);
- In fact, \(Z_1(G) = Z(G) \), the center of \(G \), and \(Z_k(G)/Z_{k-1}(G) = Z(G/Z_{k-1}(G)) \) for \(k > 1 \).
If P is a p-group and k is a natural number, we denote

$$\Omega_k(P) = \langle x \in P : x^{p^k} = 1 \rangle,$$

$$\Omega(P) = \begin{cases}
\Omega_1(P), & \text{if } p \text{ is odd}; \\
\Omega_2(P), & \text{if } p = 2.
\end{cases}$$
A group G is called p-nilpotent if G has a normal p-complement;
i.e., p does not divide the order of $O^p(G)$;
i.e., $P \cap O^p(G) = 1$ for any Sylow p-subgroup P of G.
Notations

O. H. Kegel, Math. Z., 1962

A subgroup H of G is said to be s-permutable (or s-quasinormal, π-quasinormal) in G if H permutes with every Sylow subgroup of G.
Let L/K be a chief factor of G and H a subgroup of G. We say that

i) H covers L/K if $L \leq HK$, i.e., $L/K \leq HK/K$;

ii) H avoids L/K if $L \cap H \leq K$, i.e., $L/K \cap HK/K = 1$;

iii) H has the cover-avoidance property in G, H is a CAP-subgroup of G in short, if H either covers or avoids every chief factor of G.

The cover-avoidance property of subgroup was first studied by Gaschütz in 1962 to study the solvable groups, later by many other experts.

Let H be a subgroup of a group G. Then, we say that H is a partial CAP-subgroup (or semi CAP-subgroup or SCAP-subgroup for some authors) of G if there exists a chief series Γ_H of G such that H either covers or avoids each chief factor of Γ_H.
For a group G, we know that the normalizers of its Sylow subgroups give a lot of messages of the whole group G.

M. Bianchi, A. Gillio Berta Mauri and P. Hauck, Arch. Math., 1986

A group is nilpotent if and only if the normalizer of its each Sylow subgroup is nilpotent.
Ballester-Bolinches and Shemetkov strengthen the above result to get:

Ballester-Bolinches and Shemetkov, Siberian Math. J., 1999

A group is nilpotent if and only if the normalizer of its each Sylow p-subgroup is p-nilpotent for any prime $p \in \pi(G)$.
Background

Here we consider the local version, i.e., referring one prime.

Now we assume that p is a fixed prime in $\pi(G)$ and P is a Sylow p-subgroup of G.
The property of $N_G(P)$ still influences the structure of G.

Thompson Suppose that $p \geq 5$, P is a Sylow p-subgroup of G and $P \neq 1$. If $N_G(P)$ is p-nilpotent, then $O^p(G) < G$.
Applying Thompson’s result, it is not difficult to prove a long-standing conjecture of Zassenhaus.

Theorem If G is a finite group and $N_G(Q) = Q$ for every Sylow subgroup Q of G, then $|G|$ is a power of a prime.
We can see in general:

\[N_G(P) \text{ is } p\text{-nilpotent} \iff G \text{ is } p\text{-nilpotent}. \]
Example Suppose that $G = GL(2, 3)$ and $p = 2$ and P is a Sylow 2-subgroup of G. Then $N_G(P) = P$ is 2-nilpotent but G is not 2-nilpotent.
Hence, there is the following question:

Question *Suppose that $N_G(P)$ is p-nilpotent. Which extra condition can guarantee that G is p-nilpotent?*
Background

In the literature, many experts have considered this question, for example, Burnside, P. Hall, Wielandt, Glauberman, Thompson, etc.

Glauberman-Thompson Let p be an odd prime divisor of the order of a group G and let P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if $N_G(Z(J(P)))$ is p-nilpotent, where $J(P)$ is the Thompson subgroup of P.

Remark We note that $N_G(P) \subseteq N_G(Z(J(P)))$.
Our works are from the most famous Burnside Theorem:

Burnside Theorem Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if P is abelian.

equivalent form:

Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Then G is p-nilpotent if $N_G(P) = C_G(P)$.
P is abelian $\iff P \leq Z(P)$. From this point of view, to extend Burnside Theorem, we must weaken the condition “$P \leq Z(P)$”.

We have two ways, one is to enlarge “$Z(P)$”, another is to lessen “P”.

Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if the nilpotency class of P is less than p.

Remark: the nilpotency class of P is less than p means that $P \leq Z_{p^{-1}}(P)$
Let G be a finite group and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if $\Omega_1(P) \leq Z(P)$ and $C_G(Z(P))$ is p-nilpotent.
Suppose that p is a prime. Let G be a group and P a Sylow p-subgroup of G. Assume that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if one of the following holds:

1. $\Omega(P) \leq Z_{p-1}(P)$.
2. when $p = 2$, $\Omega_1(P) \leq Z(P)$ and P is quaternion-free.
Remark J González-Sánchez and T. S. Weigel apply cohomology ring theory to obtain the result. Ballester-Bolinches, etc. give another approach based on the classical theory of Hall and Higman (see B. Huppert and N. Blackburn, Finite Groups II, Chapter IX).
We mention the following result:

A. Ballester-Bolinches and X. Guo, J. Algebra, 2000

Let p be a prime dividing the order of a group G and let P be a Sylow p-subgroup of G. Assume that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if one of the following holds:

1. $\Omega(P \cap G') \leq Z(P)$;
2. when $p = 2$, $\Omega_1(P \cap G') \leq Z(P)$ and P is quaternion-free.

where G' is the commutator subgroup of G.

Yangming Li
Generalization I of Burnside Theorem

Remark

- $P \cap O^p(G) \leq P \cap G'$ if P is a Sylow p-subgroup of G;
- G is p-nilpotent if and only if $P \cap O^p(G) = 1$.
Li, Su, Wang, Xie’s Theorem 1

Suppose that \(p \) is a prime. Let \(G \) be a group and \(P \) a Sylow \(p \)-subgroup of \(G \). Assume that \(N_G(P) \) is \(p \)-nilpotent. Then \(G \) is \(p \)-nilpotent if and only if one of the following holds:

1. \(\Omega(P \cap O^p(G)) \leq Z_{p-1}(P) \).
2. when \(p = 2 \), \(\Omega_1(P \cap O^p(G)) \leq Z(P) \) and \(P \) is quaternion-free.
Generalization I of Burnside Theorem

The works in the above is to weaken the condition “ $P \leq Z(P)$”:

1. enlarge $Z(P)$: $Z(P) \rightarrow Z_{p-1}(P)$;
2. lessen P: $P \rightarrow \Omega(P) \rightarrow \Omega(P \cap G') \rightarrow \Omega(P \cap O^p(G)) \rightarrow \Omega(P \cap G^\wedge) \rightarrow \Omega(P \cap G^L)$.

Where G^\wedge is the nilpotent residual of G, G^L is the L-residual of G, L is the class of all p-solvable groups whose p-lengths are at most 1.
From the other view to extend Burnside’s Theorem. We first mention two results in this line, one belongs to Wielandt, the other belongs to Ballester-Bolinches and Esteban-Romero.
A p-group G is called *regular* if, for any $x, y \in G$, there holds the following:

$$x^p y^p = (xy)^p \prod d_i^p,$$

where $d_i \in \langle x, y \rangle'$.

Yangming Li

Some generalizations of Burnside’s Theorem
A p-group is regular if its nilpotency class is less than p. Hence we can see that Wielandt’s following result is a generalization of Hall’s, of course, Burnside’s Theorem.

Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if P is regular.
A group G is called *modular* if, for any subgroups H and K of G, HK is a subgroup of G.
A. Ballester-Bolinches and R. Esteban-Romero, J. Algebra, 2002

Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if P is modular.
Generalization II of Burnside Theorem

Hall’s result and the above result also follow from Yoshida’s transfer theorem:

Yoshida’s theorem
The normalizer of a Sylow p-subgroup P of a group G controls p-transfer unless P has a homomorphic image isomorphic to $C_p \rtimes C_p$, where \rtimes is the wreath product.
Questions

1. Does the theorem hold if P is other kind of p-group? For example, meta-cyclic, meta-abelian, p-group of maximal class, Powerful p-group, etc. the answer is no! see Example 2 in the last section.

2. Suppose that P is meta-cyclic. If $p > 2$, a meta-cyclic p-group is p-regular, hence the answer is yes; but in the case $p = 2$, the answer is no! S_4 is a counter-example.

3. Does the theorem hold if $P \cap O^p(G)$ is a special kind of p-group? The answer is no! see Example 1 in the last section.
I think there exists a generalized regular property of p-group or a generalized modular property of p-group such that, under the assumption that $N_G(P)$ is p-nilpotent, G is p-nilpotent if and only if P possesses this property.
"P is abelian" ⇔ "P′ = 1"

From this point of view, we have:

Li, Su, Wang, Xie’s Theorem 2

Let p be a fixed prime in \(\pi(G) \) and \(P \) a Sylow p-subgroup of \(G \). Suppose that \(N_G(P) \) is \(p \)-nilpotent. Then \(G \) is \(p \)-nilpotent if \(P' \) is normal in \(G \).
Generalization III of Burnside Theorem

Go further:

Li, Su, Wang, Xie’s Theorem 3

Let \(p \) be a fixed prime in \(\pi(G) \) and \(P \) a Sylow \(p \)-subgroup of \(G \). Suppose that \(N_G(P) \) is \(p \)-nilpotent. Then \(G \) is \(p \)-nilpotent if \(P' \) is \(s \)-permutable in \(G \).

Corollary (X. Guo and X. Zhao, Acta Mathematica Scientia, 2008)

Let \(p \) be the smallest prime dividing the order of a group \(G \) and \(P \) a Sylow \(p \)-subgroup of \(G \). If every maximal subgroup of \(P \) is \(s \)-permutable in \(N_G(P) \) and \(P' \) is \(s \)-permutable in \(G \), then \(G \) is \(p \)-nilpotent.
Known results:

- Let p be the smallest prime dividing the order of a group G and P a Sylow p-subgroup of G. If every maximal subgroup of P is s-permutable in G, then G is p-nilpotent.

- (Schmid, J Algebra, 1998) if H is a normal subgroup of a Sylow subgroup of a group G and H is s-permutable in G, then H is normal in G.
Similarly, we consider other generalized normalities.

Li, Su, Wang, Xie’s Theorem 4

Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if and only if P' is a partial CAP-subgroup of G.
Known result:
G is p-nilpotent if every maximal subgroup of P is a CAP-subgroup of G, where p is the smallest prime in $\pi(G)$ and P is a Sylow p-subgroup of G.

Let p be the smallest prime in $\pi(G)$ and P a Sylow p-subgroup of G. Then G is p-nilpotent if every maximal subgroup of P is a CAP-subgroup of $N_G(P)$ and P' is a CAP-subgroup of G.
Naturally, we have the following questions:

1. Can we replace the subgroup P' by other kinds of subgroups of P in the above theorems? For example, $\Phi(P)$, etc., etc.

2. Can we unify the above theorems.
We have the following result which unify the above theorem and Hall’s result:

Li, Su, Wang and Xie’s Theorem 5

Let \(p \) be a fixed prime in \(\pi(G) \) and \(P \) a Sylow \(p \)-subgroup of \(G \). Suppose that \(N_G(P) \) is \(p \)-nilpotent. Then \(G \) is \(p \)-nilpotent if and only if there exists a normal subgroup \(N \) of \(P \) contained in \(\Phi(P) \) such that \(N \) is a partial CAP-subgroup of \(G \) and the nilpotency class of \(P/N \) is less than \(p \), i.e., \(P/N \leq Z_{p-1}(P/N) \).
Remark

1. Any normal subgroup N of P with $P' \leq N \leq \Phi(P)$ satisfies the conditions in the above theorem: the nilpotency class of P/N is less than p. Hence this condition is not much demanding.

2. If G is p-nilpotent, then every p-subgroup of G is a CAP subgroup of G. So the condition that N is a partial CAP-subgroup of G is natural.

3. If $P \leq Z_{p-1}(P)$, then pick $N = 1$. We obtain Hall's theorem; If P' is a CAP-subgroup of G, P/P' is abelian. Hence we obtain our Theorem 4.
We also have some conjectures:

Conjecture 1 Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if and only if there exists a normal subgroup N of P contained in $\Phi(P)$ such that N is a partial CAP-subgroup of G and P/N satisfies the following:

1. $\Omega(P/N) \leq Z_{p-1}(P/N)$.
2. When $p = 2$, $\Omega_1(P/N) \leq Z(P/N)$ and P/N is quaternion-free.
Conjecture 2 Let p be a fixed prime in $\pi(G)$ and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if and only if there exists a normal subgroup N of P such that $N \trianglelefteq \Phi(P)$, P/N is a modular p-group and N is a partial CAP-subgroup of G.
We know that G is p-nilpotent iff $P \cap O^p(G) = 1$.
The following example shows that G may not be p-nilpotent if we assume that $P \cap O^p(G)$ is abelian or normal in G, under the hypothesis that $N_G(P)$ is p-nilpotent.
Example 1
Let $H = A_4 = C_3[B_4]$ (the alternating group on 4 symbols). This has a faithful irreducible module of dimension 3 over the field of 3 elements $GF(3)$. Call this module $N = C_3 \times C_3 \times C_3$. Let $G = [N]H = [N](C_3[B_4])$.
Assume that $p = 3$.
Then $G_3 = P = [N]C_3$, $O^3(G) = NB_4$.
$P \cap O^3(G) = N$ is abelian and normal in G.
But G is not 3-nilpotent.
Example 2 Suppose that $G = S_4$, the symmetric group of degree 4, $p = 2$, P is a Sylow 2-group, then $N_G(P) = P = D_8$, D_8 is meta-cyclic, but G is not 2-nilpotent.
Final Remark

Thanks for all presenting here!