Sequence spaces of type S^ν, and beyond with wavelet leaders

Céline Esser

Context

► Study of the pointwise regularity of a signal f by means of the Hölder exponents h_f

$$h_f(x_0) = \sup \{\alpha \geq 0 : f \in C^\alpha(x_0)\}$$

and multifractal formalisms, which are formulas that are expected to yield the spectrum of singularities of f defined by

$$d_f(h) = \dim_H \{x \in \mathbb{R} : h_f(x) = h\}.$$

► Signals of $L^2([0, 1])$ are represented through their wavelet coefficients

$$f = \sum_{j \geq 0} \sum_{k=0}^{2^j-1} c_{j,k} \psi_{j,k}$$

and the Hölder regularity can be characterized using this representation.
Context

- Study of the pointwise regularity of a signal f by means of the Hölder exponents h_f

$$h_f(x_0) = \sup\{\alpha \geq 0 : f \in C^\alpha(x_0)\}$$

and multifractal formalisms, which are formulas that are expected to yield the spectrum of singularities of f defined by

$$d_f(h) = \dim_H\{x \in \mathbb{R} : h_f(x) = h\}.$$

- Signals of $L^2([0, 1])$ are represented through their wavelet coefficients

$$f = \sum_{j \geq 0} \sum_{k=0}^{2^j - 1} c_{j,k} \psi_{j,k}$$

and the Hölder regularity can be characterized using this representation.
The classical use of Besov spaces leads to a loss of information (for example, only the concave hull and the increasing parts of the spectrum can be recovered).

S. Jaffard introduced spaces of type S^ν

Aim : Detection of non concave spectrum.

More recently, introduction of spaces of the same type but based on the wavelet leaders of the signal

Aim : Detection of non increasing spectrum and of the oscillating singularities.
Let c be the sequence of wavelet coefficients of f. The wavelet profile ν_f of f is defined by

$$\nu_f(\alpha) = \lim_{\varepsilon \to 0^+} \left(\limsup_{j \to +\infty} \left(\frac{\log \#E_j(1, \alpha + \varepsilon)(f)}{\log 2^j} \right) \right)$$

for all $\alpha \in \mathbb{R}$, where

$$E_j(C, \alpha)(f) = \{ k : |c_{j,k}| \geq C 2^{-\alpha j} \} .$$

Interpretation: there are "approximatively" $2^{\nu_f(\alpha)j}$ coefficients greater in modulus than $2^{-\alpha j}$.

** ν_f is independant of the chosen wavelet basis.**
Let \(c \) be the sequence of wavelet coefficients of \(f \). The wavelet profile \(\nu_f \) of \(f \) is defined by

\[
\nu_f(\alpha) = \lim_{\varepsilon \to 0^+} \left(\limsup_{j \to +\infty} \left(\frac{\log \#E_j(1, \alpha + \varepsilon)(f)}{\log 2^j} \right) \right)
\]

for all \(\alpha \in \mathbb{R} \), where

\[
E_j(C, \alpha)(f) = \left\{ k : |c_{j,k}| \geq C2^{-\alpha j} \right\}.
\]

- **Interpretation**: there are "approximatively" \(2^{\nu_f(\alpha)j} \) coefficients greater in modulus than \(2^{-\alpha j} \).

- \(\nu_f \) is independant of the chosen wavelet basis.
Let \(c \) be the sequence of wavelet coefficients of \(f \). The wavelet profile \(\nu_f \) of \(f \) is defined by

\[
\nu_f(\alpha) = \lim_{\varepsilon \to 0^+} \left(\limsup_{j \to +\infty} \left(\frac{\log \# E_j(1, \alpha + \varepsilon)(f)}{\log 2^j} \right) \right)
\]

for all \(\alpha \in \mathbb{R} \), where

\[
E_j(C, \alpha)(f) = \{ k : |c_{j,k}| \geq C 2^{-\alpha j} \}.
\]

- **Interpretation**: there are "approximatively" \(2^{\nu_f(\alpha)j} \) coefficients greater in modulus than \(2^{-\alpha j} \).
- \(\nu_f \) is independant of the chosen wavelet basis.
Consider an increasing function $\nu : \mathbb{R} \to \{-\infty\} \cup [0, 1]$ right continuous (called an admissible profile). Define

$$\alpha_{\text{min}} := \inf \{\alpha : \nu(\alpha) \geq 0\}$$

$$\alpha_{\text{max}} := \inf \{\alpha : \nu(\alpha) = 1\}.$$

Denote Ω the set of complex sequences $c = (c_{j,k})_{j \in \mathbb{N}, k \in \{0, \ldots, 2^j - 1\}}$.

Définition

The space S^ν is the set of sequences $c \in \Omega$ such that

$$\forall \alpha \in \mathbb{R}, \forall \varepsilon > 0, \forall C > 0, \exists J \geq 0 : \# E_j(C, \alpha)(c) \leq 2^{(\nu(\alpha) + \varepsilon)j}, \forall j \geq J$$

where

$$E_j(C, \alpha)(c) = \{k : |c_{j,k}| \geq C2^{-\alpha j}\}.$$
Consider an increasing function \(\nu : \mathbb{R} \to \{-\infty\} \cup [0, 1] \) right continuous (called an \textit{admissible profile}). Define

\[
\alpha_{\text{min}} := \inf \{ \alpha : \nu(\alpha) \geq 0 \} \\
\alpha_{\text{max}} := \inf \{ \alpha : \nu(\alpha) = 1 \}.
\]

Denote \(\Omega \) the set of complex sequences

\[
c = (c_{j,k})_{j \in \mathbb{N}, k \in \{0, \ldots, 2^j - 1\}}.
\]

\textbf{Définition}

The space \(S^{\nu} \) is the set of sequences \(c \in \Omega \) such that

\[
\forall \alpha \in \mathbb{R}, \forall \varepsilon > 0, \forall C' > 0, \exists J \geq 0 : \#E_j(C, \alpha)(c) \leq 2^{(\nu(\alpha)+\varepsilon)j}, \forall j \geq J
\]

where

\[
E_j(C, \alpha)(c) = \{ k : |c_{j,k}| \geq C2^{-\alpha j} \}.
\]
Proposition

The space S^ν is a vector space and

$$S^\nu = \{ c \in \Omega : \nu_c(\alpha) \leq \nu(\alpha), \forall \alpha \in \mathbb{R} \}.$$

Examples of S^ν spaces:

- Assume that $\nu(\alpha) = 1$ for all $\alpha \in \mathbb{R}$. If $c \in \Omega$, for every $\alpha \in \mathbb{R}$, $\varepsilon > 0$ and $C' > 0$,

$$\#E_j(C, \alpha)(c) \leq 2^j < 2^{(\nu(\alpha)+\varepsilon)j} \quad \forall j \in \mathbb{N}.$$

This means that $c \in S^\nu$ and therefore, $S^\nu = \Omega$.

- Assume that

$$\nu(\alpha) = \begin{cases} -\infty & \text{si } \alpha < a \\ 1 & \text{si } \alpha \geq a \end{cases}$$

where $a \in \mathbb{R}$. Then S^ν is the set of sequences c such that for every $\alpha < a$,

$$\sup_{j \in \mathbb{N}} \sup_{k \in \{0, \ldots, 2^j - 1\}} 2^{\alpha j} |c_{j,k}| < +\infty.$$
Proposition

The space S^ν is a vector space and

$$S^\nu = \{ c \in \Omega : \nu_c(\alpha) \leq \nu(\alpha) , \forall \alpha \in \mathbb{R} \}.$$

Examples of S^ν spaces :

- Assume that $\nu(\alpha) = 1$ for all $\alpha \in \mathbb{R}$. If $c \in \Omega$, for every $\alpha \in \mathbb{R}$, $\varepsilon > 0$ and $C > 0$,

 $$\#E_j(C, \alpha)(c) \leq 2^j < 2^{(\nu(\alpha)+\varepsilon)j} \quad \forall j \in \mathbb{N}.$$

 This means that $c \in S^\nu$ and therefore, $S^\nu = \Omega$.

- Assume that

 $$\nu(\alpha) = \begin{cases} -\infty & \text{si } \alpha < a \\ 1 & \text{si } \alpha \geq a \end{cases}$$

 where $a \in \mathbb{R}$. Then S^ν is the set of sequences c such that for every $\alpha < a$,

 $$\sup_{j \in \mathbb{N}} \sup_{k \in \{0, \ldots, 2^j - 1 \}} 2^{\alpha j} |c_{j,k}| < +\infty.$$
Proposition

The space S^{ν} is a vector space and

$$S^{\nu} = \{ c \in \Omega : \nu_c(\alpha) \leq \nu(\alpha), \forall \alpha \in \mathbb{R} \}. $$

Examples of S^{ν} spaces:

- Assume that $\nu(\alpha) = 1$ for all $\alpha \in \mathbb{R}$. If $c \in \Omega$, for every $\alpha \in \mathbb{R}$, $\varepsilon > 0$ and $C > 0$,

$$\# E_j(C, \alpha)(c) \leq 2^j < 2^{(\nu(\alpha)+\varepsilon)j} \quad \forall j \in \mathbb{N}. $$

This means that $c \in S^{\nu}$ and therefore, $S^{\nu} = \Omega$.

- Assume that

$$\nu(\alpha) = \begin{cases} -\infty & \text{si} \quad \alpha < a \\ 1 & \text{si} \quad \alpha \geq a \end{cases}$$

where $a \in \mathbb{R}$. Then S^{ν} is the set of sequences c such that for every $\alpha < a$,

$$\sup_{j \in \mathbb{N}} \sup_{k \in \{0, \ldots, 2^j - 1\}} 2^{\alpha j} |c_{j,k}| < +\infty.$$
Besov Spaces

For $s \in \mathbb{R}$ and $p > 0$, a function belongs to the Besov space $b^s_{p,\infty}$ if its wavelets coefficients satisfy

$$
\|c\|_{b^s_{p,\infty}} := \sup_{j \in \mathbb{N}_0} 2^{(s - \frac{1}{p})j} \left(\sum_{k=0}^{2^j - 1} |c_{j,k}|^p \right)^{\frac{1}{p}} < +\infty.
$$

The definition is extended to the case $p = \infty$ by setting

$$
\|c\|_{C^s} := \sup_{j \in \mathbb{N}_0} \sup_{k \in \{0, \ldots, 2^j - 1\}} 2^{sj} |c_{j,k}|.
$$

This corresponds to the Hölder space of order s, denoted by C^s. These spaces are independent of the wavelet mother chosen. Considered as sequence spaces, they are Banach spaces if $p \geq 1$ and complete metric spaces if $p < 1$.
If we define the concave conjugate η of ν by

$$\eta(p) := \inf_{\alpha \geq \alpha_{\min}} (\alpha p - \nu(\alpha) + 1)$$

we get the following characterization of S^ν spaces.

Link with Besov Spaces

If $(p_n)_{n \in \mathbb{N}}$ is a dense sequence of $]0, +\infty[$ and if $(\varepsilon_m)_{m \in \mathbb{N}}$ is a sequence of strictly positive numbers converging to 0, then

$$S^\nu \subset \bigcap_{\varepsilon > 0} \bigcap_{p > 0} b_{p, \infty}^{\eta(p)/p - \varepsilon} = \bigcap_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} b_{p_n, \infty}^{\eta(p_n)/p_n - \varepsilon_m}$$

and this inclusion becomes an equality if and only if ν is concave.
Definition
Let $\alpha \in \mathbb{R}$ and $\beta \in \{-\infty\} \cup [0, +\infty[$. A sequence c belongs to the auxiliary space $E(\alpha, \beta)$ if there exists $C, C' \geq 0$ such that

$$\# \left\{ k : |c_{j,k}| \geq C2^{-\alpha j} \right\} \leq C'2^{\beta j}, \quad \forall j \geq 0.$$

Proposition
For any sequence $(\alpha_n)_{n \in \mathbb{N}}$ dense in \mathbb{R} and $\forall (\varepsilon_m)_{m \in \mathbb{N}} \to 0^+$,

$$S^\nu = \bigcap_{\varepsilon > 0} \bigcap_{\alpha \in \mathbb{R}} E(\alpha, \nu(\alpha) + \varepsilon) = \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} E(\alpha_n, \nu(\alpha_n) + \varepsilon_m).$$
Definition

Let $\alpha \in \mathbb{R}$ and $\beta \in \{-\infty\} \cup [0, +\infty[$. A sequence c belongs to the auxiliary space $E(\alpha, \beta)$ if there exists $C, C' \geq 0$ such that

$$\# \left\{ k : |c_{j,k}| \geq C2^{-\alpha j} \right\} \leq C'2^{\beta j}, \forall j \geq 0.$$

Proposition

For any sequence $(\alpha_n)_{n \in \mathbb{N}}$ dense in \mathbb{R} and $\forall (\varepsilon_m)_{m \in \mathbb{N}} \to 0^+$,

$$S^\nu = \bigcap_{\varepsilon > 0} \bigcap_{\alpha \in \mathbb{R}} E(\alpha, \nu(\alpha) + \varepsilon) = \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} E(\alpha_n, \nu(\alpha_n) + \varepsilon_m).$$
The definition on a distance on every auxiliary spaces $E(\alpha, \nu(\alpha) + \varepsilon)$ will provide a distance on S'_ν (initial topology).

Classical result of functional analysis

Let $(E_m)_{m \in \mathbb{N}}$ be a sequence of spaces endowed with the topologies defined by the distances d_m, and let $E = \bigcap_{m \in \mathbb{N}} E_m$. On E, let us consider the topology defined as follows: for every $e \in E$, a basis of neighbourhoods of e is given by the family of sets

$$\bigcap_{(m)} \{ f \in E : d_m(e, f) \leq r_m \}, \quad r_m > 0.$$

Then,

1. This topology is equivalent to the topology defined on E by the distance d given by

$$d(e, f) = \sum_{m=1}^{+\infty} 2^{-m} \frac{d_m(e, f)}{1 + d_m(e, f)}, \quad e, f \in E.$$

2. A sequence is a Cauchy sequence in (E, d) if and only if it is a Cauchy sequence in (E_m, d_m) for every $m \in \mathbb{N}$.

3. A sequence converges to e in (E, d) if and only if it converges to e in (E_m, d_m) for every $m \in \mathbb{N}$.

Sequence spaces of type S'_ν, and beyond with wavelet leaders Céline Esser
Distance on the auxiliary space $E(\alpha, \beta)$

$$\delta_{\alpha, \beta}(c, c') := \inf \left\{ C + C' : C, C' \geq 0 \text{ and } \#E_j(C, \alpha)(c - c') \leq C'2^{\beta j} \forall j \in \mathbb{N} \right\}$$

From the characterization of S^{ν} as an intersection of auxiliary spaces, we get a distance d on S^{ν}.

Property

The space (S^{ν}, d) is a complete separable topological vector space.
Distance on the auxiliary space $E(\alpha, \beta)$

$$\delta_{\alpha,\beta}(c, c') := \inf \{ C + C' : C, C' \geq 0 \text{ and } \#E_j(C, \alpha)(c - c') \leq C'2^{\beta j} \forall j \in \mathbb{N} \}.$$

From the characterization of S^ν as an intersection of auxiliary spaces, we get a distance d on S^ν.

Property

The space (S^ν, d) is a complete separable topological vector space.
Definition
Let $0 < p \leq 1$. A subset K of a vector space E is p-convex if for every $x_1, \ldots, x_N \in K$ and for every $\theta_1, \ldots, \theta_N \geq 0$ such that $\sum_{n=1}^{N} \theta_n^p = 1$, then p-convex combinaison $\sum_{n=1}^{N} \theta_n x_n$ belongs to K. The set K is absolutely p-convex if it is p-convex and if

\[\forall x \in K, \forall |\lambda| \leq 1, \lambda x \in K. \]

Proposition
Let $0 < p \leq 1$. A subset K of a vector space E is absolutely p-convex if and only if

\[\sum_{i=1}^{n} \mu_i K \subset K \]

for all $\mu_1, \ldots, \mu_n \in \mathbb{C}$ such that $\sum_{i=1}^{n} |\mu_i|^p \leq 1$.
p local convexity

Definition
Let $0 < p \leq 1$. A subset K of a vector space E is p-convex if for every $x_1, \ldots, x_N \in K$ and for every $\theta_1, \ldots, \theta_N \geq 0$ such that $\sum_{n=1}^{N} \theta_n^p = 1$, then p-convex combination $\sum_{n=1}^{N} \theta_n x_n$ belongs to K. The set K is absolutely p-convex if it is p-convex and if

$$\forall x \in K, \forall |\lambda| \leq 1, \lambda x \in K.$$

Proposition
Let $0 < p \leq 1$. A subset K of a vector space E is absolutely p-convex if and only if

$$\sum_{i=1}^{n} \mu_i K \subset K$$

for all $\mu_1, \ldots, \mu_n \in \mathbb{C}$ such that $\sum_{i=1}^{n} |\mu_i|^p \leq 1$.
p local convexity

Definition
Let $0 < p \leq 1$. A subset K of a vector space E is p-convex if for every $x_1, \ldots, x_N \in K$ and for every $\theta_1, \ldots, \theta_N \geq 0$ such that $\sum_{n=1}^{N} \theta_n^p = 1$, then p-convex combination $\sum_{n=1}^{N} \theta_n x_n$ belongs to K. The set K is absolutely p-convex if it is p-convex and if

$$\forall x \in K, \forall |\lambda| \leq 1, \lambda x \in K.$$

Proposition
Let $0 < p \leq 1$. A subset K of a vector space E is absolutely p-convex if and only if

$$\sum_{i=1}^{n} \mu_i K \subset K$$

for all $\mu_1, \ldots, \mu_n \in \mathbb{C}$ such that $\sum_{i=1}^{n} |\mu_i|^p \leq 1$.
Definition
A topological vector space is p-locally convex if it has a basis of 0-nbh absolutely p-convex.

Definition
Let E be a vector space and let $0 < p \leq 1$. An application $q : E \to [0, +\infty[$ is a p semi-norm if

\[
\begin{align*}
q(\lambda e) &= |\lambda| q(e) \\
(q(e + f))^p &\leq (q(e))^p + (q(f))^p
\end{align*}
\]

$\forall \lambda \in \mathbb{C}, e \in E$

$\forall e, f \in E$

If moreover, $q(e) = 0 \iff e = 0$, then q is a p norm.

Theorem
A topological vector space (E, \mathcal{T}) is p-locally convex if and only if there exists a family of p semi-norms on E that defined a topology equivalent to the topology \mathcal{T}.
Definition

A topological vector space is *p*-locally convex if it has a basis of 0-nbh absolutely *p*-convex.

Definition

Let E be a vector space and let $0 < p \leq 1$. An application $q : E \to [0, +\infty[$ is a *p* semi-norm if

\[
\begin{align*}
q(\lambda e) &= |\lambda|q(e) \\
(q(e + f))^p &\leq (q(e))^p + (q(f))^p
\end{align*}
\]

\[\forall \lambda \in \mathbb{C}, e \in E, e, f \in E\]

If moreover, $q(e) = 0 \iff e = 0$, then q is a *p* norm.

Theorem

A topological vector space (E, T) is *p*-locally convex if and only if there exists a family of *p* semi-norms on E that defined a topology equivalent to the topology T.
Definition
A topological vector space is \(p \)-locally convex if it has a basis of 0-nbh absolutely \(p \)-convex.

Definition
Let \(E \) be a vector space and let \(0 < p \leq 1 \). An application \(q : E \to [0, +\infty[\) is a \(p \) semi-norm if

\[
\begin{align*}
q(\lambda e) &= |\lambda|q(e) \\
(q(e + f))^p &\leq (q(e))^p + (q(f))^p
\end{align*}
\]

\(\forall \lambda \in \mathbb{C}, e \in E \)

\(\forall e, f \in E \)

If moreover, \(q(e) = 0 \Leftrightarrow e = 0 \), then \(q \) is a \(p \) norm.

Theorem
A topological vector space \((E, T)\) is \(p \)-locally convex if and only if there exists a family of \(p \) semi-norms on \(E \) that defined a topology equivalent to the topology \(T \).
Definition
A topological vector space is *p*-locally convex if it has a basis of 0-nbh absolutely *p*-convex.

Definition
Let E be a vector space and let $0 < p \leq 1$. An application $q : E \rightarrow [0, +\infty[$ is a *p* semi-norm if

\[
\begin{align*}
q(\lambda e) &= |\lambda| q(e) \\
(q(e + f))^p &\leq (q(e))^p + (q(f))^p
\end{align*}
\]

$\forall \lambda \in \mathbb{C}, e \in E \land \forall e, f \in E$

If moreover, $q(e) = 0 \iff e = 0$, then q is a *p* norm.

Theorem
A topological vector space (E, \mathcal{T}) is *p*-locally convex if and only if there exists a family of *p* semi-norms on E that defined a topology equivalent to the topology \mathcal{T}.
Definition

We define
\[\partial^+ \nu(\alpha) := \liminf_{h \to 0^+} \frac{\nu(\alpha + h) - \nu(\alpha)}{h} . \]
for every \(\alpha \in \mathbb{R} \) such that \(\alpha \geq \alpha_{\min} \). The local convexity index of \(\nu \) is defined by
\[p_0 := \min \left(1, \inf_{\alpha_{\min} \leq \alpha < \alpha_{\max}} \partial^+ \nu(\alpha) \right) . \]

Proposition

The topological vector space \(S^\nu \) is not \(p \)-normable for any \(p > 0 \). Moreover,

- if \(p_0 < 1 \), then \(S^\nu \) is not \(p \)-locally convex for any \(p > p_0 \);
- if \(p_0 > 0 \), then \(S^\nu \) is \(p_0 \)-locally convex.
Definition

We define

\[\partial^+ \nu(\alpha) := \liminf_{h \to 0^+} \frac{\nu(\alpha + h) - \nu(\alpha)}{h} \]

for every \(\alpha \in \mathbb{R} \) such that \(\alpha \geq \alpha_{\text{min}} \). The local convexity index of \(\nu \) is defined by

\[p_0 := \min \left(1, \inf_{\alpha_{\text{min}} \leq \alpha < \alpha_{\text{max}}} \partial^+ \nu(\alpha) \right) . \]

Proposition

The topological vector space \(S^\nu \) is not \(p \)-normable for any \(p > 0 \). Moreover,

- if \(p_0 < 1 \), then \(S^\nu \) is not \(p \)-locally convex for any \(p > p_0 \);
- if \(p_0 > 0 \), then \(S^\nu \) is \(p_0 \)-locally convex.
Description of the topology

If $p_0 > 0$, the topology of S^ν is induced by the family of norms $\| \cdot \|_{b_{\infty,\infty}^{\alpha_{min} - \varepsilon}}$ together with the p_0-norms $\| \cdot \|_{\alpha,\varepsilon}$ defined by

$$\| x \|_{\alpha,\varepsilon} := \inf \left\{ \| x' \|_{b_{p_0,\infty}^s} + \| x'' \|_{b_{\infty,\infty}^\alpha} : x = x' + x'' \right\}$$

where $\alpha \in [\alpha_{min}, \alpha_{max}]$, $\varepsilon > 0$ and $s := \alpha + \frac{1-\nu(\alpha)}{p_0} - \varepsilon$. This family of p_0-norms may be made countable by taking a sequence $\{\alpha_n\}_{n \in \mathbb{N}}$ dense in $[\alpha_{min}, \alpha_{max}]$ and a sequence $\{\varepsilon_m\}_{m \in \mathbb{N}}$ of positive real numbers converging to 0.

Case $p_0 = 0$

If $\alpha_{min} > -\infty$, for every sequence $\{p_m\}_{m \in \mathbb{N}}$ of $]0, 1]$ converging to 0, the topology of the space S^ν can be defined by a sequence of p_m semi-norms. Therefore, the space S^ν is locally pseudoconvex.
Description of the topology

If \(p_0 > 0 \), the topology of \(S^\nu \) is induced by the family of norms \(\| \cdot \|_{b_{\alpha_{min} - \varepsilon}^{\alpha_{min} - \varepsilon}} \) together with the \(p_0 \)-norms \(\| \cdot \|_{\alpha, \varepsilon} \) defined by

\[
\| x \|_{\alpha, \varepsilon} := \inf \left\{ \| x' \|_{b_{p_0, \infty}^s} + \| x'' \|_{b_{\alpha, \infty}^\infty} : x = x' + x'' \right\}
\]

where \(\alpha \in [\alpha_{\text{min}}, \alpha_{\text{max}}], \varepsilon > 0 \) and \(s := \alpha + \frac{1 - \nu(\alpha)}{p_0} - \varepsilon \). This family of \(p_0 \)-norms may be made countable by taking a sequence \((\alpha_n)_{n \in \mathbb{N}} \) dense in \([\alpha_{\text{min}}, \alpha_{\text{max}}]\) and a sequence \((\varepsilon_m)_{m \in \mathbb{N}} \) of positive real numbers converging to 0.

Case \(p_0 = 0 \)

If \(\alpha_{\text{min}} > -\infty \), for every sequence \((p_m)_{m \in \mathbb{N}} \) of \([0, 1]\) converging to 0, the topology of the space \(S^\nu \) can be defined by a sequence of \(p_m \) semi-norms.

Therefore, the space \(S^\nu \) is locally pseudoconvex.
More properties when $p_0 = 1$

- S^ν is a Frechet space
- For Frechet spaces, we have the following relations:

\[
\begin{array}{c}
\text{Nucléaire} \rightarrow \text{Schwartz} \\
\text{Montel} \rightarrow \text{Réflexif} \\
\text{Quasi-normable} \rightarrow \text{Condition de Densité} \\
\text{Distingué}
\end{array}
\]

Proposition

If $p_0 = 1$, the space S^ν is not nuclear but is a Schwartz space.
More properties when \(p_0 = 1 \)

- \(S^\nu \) is a Frechet space
- For Frechet spaces, we have the following relations:

\[
\text{Nucléaire} \rightarrow \text{Schwartz} \quad \text{Montel} \rightarrow \text{Réflexif} \\
\text{Quasi-normable} \rightarrow \text{Condition de Densité} \\
\text{Distingué}
\]

Proposition

If \(p_0 = 1 \), the space \(S^\nu \) is not nuclear but is a Schwartz space.
If $p_0 < 1$?

- The space S^ν is not locally convex
- Generalize the studied properties

Définition

A Hausdorff topological vector space E is **Schwartz** if every 0-nbh U contains a 0-nbh V such that for every $\lambda > 0$, there exists a finite set $M \subset E$ such that

$$V \subset M + \lambda U.$$

Proposition

The space S^ν is Schwartz.
If $p_0 < 1$?

- The space S^ν is not locally convex
- Generalize the studied properties

Définition
A Hausdorff topological vector space E is **Schwartz** if every 0-nbh U contains a 0-nbh V such that for every $\lambda > 0$, there exists a finite set $M \subset E$ such that

$$V \subset M + \lambda U.$$

Proposition
The space S^ν is Schwartz.
If $p_0 < 1$?

- The space S^ν is not locally convex
- Generalize the studied properties

Définition

A Hausdorff topological vector space E is **Schwartz** if every 0-nbh U contains a 0-nbh V such that for every $\lambda > 0$, there exists a finite set $M \subset E$ such that

$$V \subset M + \lambda U.$$

Proposition

The space S^ν is Schwartz.
Dual Space

If \(u \in (S^\nu)' \), then \(u \) can be identified with a sequence \(y \) such that

\[
u(x) = \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^j-1} x_{j,k} y_{j,k}
\]

for every \(x \in S^\nu \). Indeed, we set

\[
y = \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^j-1} u(\vec{e}^j,k) e^{j,k}.
\]

Notation:

\[
\|\beta\| = \begin{cases}
-\infty & \text{if } \beta < 0 \\
\beta & \text{if } 0 \leq \beta \leq 1 \\
1 & \text{if } \beta \geq 1
\end{cases}
\]

The dual profile of \(\nu \) is the function \(\nu' \) defined on \(\mathbb{R} \) by

\[
\nu' : \alpha' \mapsto \|\alpha' + \inf \{\alpha : \nu(\alpha) - \alpha > \alpha'\}\|.
\]
Dual Space

If \(u \in (S^\nu)' \), then \(u \) can be identified with a sequence \(y \) such that

\[
u(x) = \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^j-1} x_{j,k} y_{j,k},
\]

for every \(x \in S^\nu \). Indeed, we set

\[
y = \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^j-1} u(\tilde{e}^j,k) e^{j,k}.
\]

Notation:

\[
\|\beta\| = \begin{cases}
-\infty & \text{si } \beta < 0 \\
\beta & \text{si } 0 \leq \beta \leq 1 \\
1 & \text{si } \beta \geq 1
\end{cases}
\]

The dual profile of \(\nu \) is the function \(\nu' \) defined on \(\mathbb{R} \) by

\[
\nu' : \alpha' \mapsto \|\alpha' + \inf \{ \alpha : \nu(\alpha) - \alpha > \alpha' \}\|.
\]
Dual Space

If \(u \in (S^\nu)' \), then \(u \) can be identified with a sequence \(y \) such that

\[
u(x) = \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^j-1} x_{j,k} y_{j,k}
\]

for every \(x \in S^\nu \). Indeed, we set

\[
y = \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^j-1} \frac{u(e^{j,k})}{e^{j,k}}.
\]

Notation:

\[
\|\beta\| = \begin{cases} -\infty & \text{si } \beta < 0 \\ \beta & \text{si } 0 \leq \beta \leq 1 \\ 1 & \text{si } \beta \geq 1 \end{cases}
\]

The dual profile of \(\nu \) is the function \(\nu' \) defined on \(\mathbb{R} \) by

\[
\nu' : \alpha' \mapsto \| \alpha' + \inf \{ \alpha : \nu(\alpha) - \alpha > \alpha' \} \|.
\]
Proposition
For every decreasing sequence \((\varepsilon_m)_{m \in \mathbb{N}}\) that converges to 0, the dual of \(S^\nu\) is
\[
(S^\nu)' = \bigcup_{\varepsilon > 0} S^{\nu_\varepsilon} = \bigcup_{m \in \mathbb{N}} S^{\nu_\varepsilon_m}
\]
where
\[
\nu_\varepsilon'(\alpha') := \nu'(\alpha' - \varepsilon) \; \forall \alpha' \in \mathbb{R}.
\]

Proposition
On the dual space, the strong topology and the inductive limit topology coincide.
Wavelet leaders

Standard notation: For \(j \in \mathbb{N}_0, k \in \{0, \ldots, 2^j - 1\} \),

\[
\lambda(j, k) := \{ x \in \mathbb{R} : 2^j x - k \in [0, 1] \} = \left[\frac{k}{2^j}, \frac{k + 1}{2^j} \right],
\]

and for all \(j \in \mathbb{N}_0 \), \(\Lambda_j \) denote the set of all dyadic interval (of \([0, 1]\)) of length \(2^{-j} \).

Definition

The wavelet leaders of a signal \(f \in L^2([0, 1]) \) are defined by

\[
d_\lambda := \sup_{\lambda' \subset \lambda} |c_{\lambda'}|, \quad \lambda \in \Lambda_j, \ j \in \mathbb{N}_0
\]

(we also use the notation \(d_{j,k} \)).
Wavelet leaders

Standard notation: For $j \in \mathbb{N}_0$, $k \in \{0, \ldots, 2^j - 1\}$,

$$
\lambda(j, k) := \{ x \in \mathbb{R} : 2^j x - k \in [0, 1] \} = \left[\frac{k}{2^j}, \frac{k + 1}{2^j} \right],
$$

and for all $j \in \mathbb{N}_0$, Λ_j denote the set of all dyadic interval (of $[0, 1]$) of length 2^{-j}.

Definition

The **wavelet leaders** of a signal $f \in L^2([0, 1])$ are defined by

$$
d_\lambda := \sup_{\lambda' \subset \lambda} |c_{\lambda'}|, \quad \lambda \in \Lambda_j, \ j \in \mathbb{N}_0
$$

(we also use the notation $d_{j,k}$).
Definition

Let ν be an admissible profile. A sequence c of Ω belongs to \tilde{S}_ν if for every $\alpha \in \mathbb{R}$, $\varepsilon > 0$ and $C > 0$, there exists $J \in \mathbb{N}_0$ such that

$$\# \tilde{E}_j(C, \alpha)(c) \leq 2^{(\nu(\alpha) + \varepsilon)j} \quad \forall j \geq J,$$

where

$$\tilde{E}_j(C, \alpha)(c) := \left\{ k \in \{0, \ldots, 2^j - 1\} : d_{j,k} \geq C2^{-\alpha j} \right\}.$$

For every $c \in \Omega$, we define the asymptotic leader profile of c by

$$\tilde{\nu}_c(\alpha) := \lim_{\varepsilon \to 0^+} \left(\limsup_{j \to +\infty} \left(\frac{\ln(\# \tilde{E}_j(1, \alpha + \varepsilon)(c))}{\ln(2^j)} \right) \right), \quad \alpha \in \mathbb{R}.$$

Proposition

The space \tilde{S}_ν is a linear space and

$$\tilde{S}_\nu = \{ c \in \Omega : \tilde{\nu}(\alpha) \leq \nu(\alpha) \quad \forall \alpha \in \mathbb{R} \}.$$
Definition
Let ν be an admissible profile. A sequence c of Ω belongs to \tilde{S}^ν if for every $\alpha \in \mathbb{R}$, $\varepsilon > 0$ and $C > 0$, there exists $J \in \mathbb{N}_0$ such that

$$\# \tilde{E}_j(C, \alpha)(c) \leq 2^{(\nu(\alpha) + \varepsilon)j} \quad \forall j \geq J,$$

where

$$\tilde{E}_j(C, \alpha)(c) := \{k \in \{0, \ldots, 2^j - 1\} : d_{j,k} \geq C2^{-\alpha j}\}.$$

For every $c \in \Omega$, we define the asymptotic leader profile of c by

$$\tilde{\nu}_c(\alpha) := \lim_{\varepsilon \to 0^+} \left(\limsup_{j \to +\infty} \left(\frac{\ln(\# \tilde{E}_j(1, \alpha + \varepsilon)(c))}{\ln(2^j)} \right) \right), \quad \alpha \in \mathbb{R}.$$

Proposition
The space \tilde{S}^ν is a linear space and

$$\tilde{S}^\nu = \{c \in \Omega : \tilde{\nu}(\alpha) \leq \nu(\alpha) \quad \forall \alpha \in \mathbb{R}\}.$$
Of course, $\widetilde{S}^\nu \subset S^\nu$: sufficient condition on ν to have a strict inclusion, sufficient condition on ν to have an equality + generic results.

+++ Topology on \widetilde{S}^ν, link with Oscillation Spaces (equivalent of Besov spaces), normability/locally convexity, non nuclearity, Schwartz,...
Of course, $\widetilde{S}^\nu \subset S^\nu$: sufficient condition on ν to have a strict inclusion, sufficient condition on ν to have an equality + generic results.

+++ Topology on \widetilde{S}^ν, link with Oscillation Spaces (equivalent of Besov spaces), normability/locally convexity, non nuclearity, Schwartz,...