A brief survey on transitivity and Devaney’s chaos: autonomous and nonautonomous discrete dynamical systems

M. Sanchis

Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC), UJI

WATS 2016
June 22th to 23th, 2016 (IUMPA, UPV)
1 Introduction

2 Main Theorem on transitivity

3 Devaney’s chaos

4 Nonautonomous discrete dynamical systems
1 Introduction

2 Main Theorem on transitivity

3 Devaney’s chaos

4 Nonautonomous discrete dynamical systems
Definition
Let X be a metric space. If $f: X \to X$ is a continuous function, then (X, f) is called a(n) (autonomous) discrete dynamical system.
Let $x \in X$. The orbit of x is the sequence

$$x, f(x), f^2(x), \ldots, f^n(x), \ldots.$$
Introduction

Definition (TT)

A discrete dynamical system \((X, f)\) is said to be *topological transitive* if for every pair of nonempty open sets \(U\) and \(V\) in \(X\), there is a positive integer \(n\) such that \(f^n(U) \cap V \neq \emptyset\).
Definition (DO)

A discrete dynamical system \((X, f)\) is said to satisfy \emph{property (DO)} if there is a point \(x \in X\) such that the orbit of \(x\) is dense in \(X\).
(DO) does not imply (TT)

Take \(X = \{0\} \cup \{1/n\} \) and \(f : X \to X \) defined as \(f(1/n) = 1/(n + 1) \).
Neither \((TT)\) implies \((DO)\)

To this end take \(\mathbb{I}\) and the standard tent map
\(g(x) = 1 - |2x - 1|\) from \(\mathbb{I}\) into itself.
Let \(X\) be the set of all periodic points of \(g\) and \(f = g|_X\).
Then the system \((X, f)\) does not satisfy the condition \((DO)\), since \(X\) is infinite (dense in \(\mathbb{I}\)) while the orbit of any periodic point is finite. But the condition \((TT)\) is fulfilled.
1 Introduction

2 Main Theorem on transitivity

3 Devaney’s chaos

4 Nonautonomous discrete dynamical systems
Theorem (Sylverman (1992))

If X has no isolated point then (DO) implies (TT). If X is separable and second category, then (TT) implies (DO).
1. Introduction
2. Main Theorem on transitivity
3. Devaney’s chaos
4. Nonautonomous discrete dynamical systems
Devaney’s chaos

A discrete dynamical system \((X, f)\) is called *Devaney chaotic* if the following conditions hold:

(i) \((X, f)\) is transitive;

(ii) the periodic points of \(f\) are dense in \(X\);

(iii) \(f\) has sensitive dependence on initial conditions.
Theorem (Banks et al. (1992))
Transitivity + $P(f)$ dense \implies sensitive dependence on initial conditions.
Theorem (Alsedà et al. (1999))
If in the system (X, f) the space X is connected and has a disconnecting interval and f is transitive, then $P(f)$ is dense in X.
1. Introduction

2. Main Theorem on transitivity

3. Devaney’s chaos

4. Nonautonomous discrete dynamical systems
Definition Let X be a topological space, $f_n : X \to X$ a continuous function for each positive integer n, and $f_\infty = (f_1, f_2, \ldots, f_n, \ldots)$. The pair (X, f_∞) denotes the nonautonomous discrete dynamical system (NDS, for short) in which the orbit of a point $x \in X$ under f_∞ is defined as the set

$$\text{orb}(x, f_\infty) = \{x, f_1(x), f_1^2(x), \ldots, f_1^n(x), \ldots\},$$

where

$$f_1^n := f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1,$$

for each positive integer n.
Theorem

Suppose that X is a second-countable space with the Baire property. If (X, f_∞) is transitive, then there exists a dense orbit.
Example

There is a NDS (\mathbb{I}, g_∞) which has a dense orbit but it is not transitive.
Example

There is a transitive NDS \((\mathbb{I}, g_\infty)\) with sensitive dependence on initial conditions such that the set of periodic points is not dense in \(\mathbb{I}\).
For Further Reading

For Further Reading

That’s all folks !!