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Preliminary definitions

Given a Banach space L and K ⊂ L a convex subset, we
denote by cc(L) the hyperspace of all compact convex subsets
of K equipped with the Hausdorff metric:

dH(A,B) = máx

{
sup
b∈B

d(b,A), sup
a∈A

d(a,B)

}
,

where d(b,A) = ı́nf{d(b, a) | a ∈ A}.

We denote by Bn the unitary euclidean ball, i.e.

Bn = {z ∈ Rn | ‖x‖ ≤ 1}

where ‖ · ‖ denotes the euclidean norm.
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By a convex body in Rn we understand a compact convex
subset of Rn with a non empty interior.

Let cb(Rn) be the subspace of cc(Rn) consisting of all convex
bodies.
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Banach Mazur Compacta

The Banach-Mazur compactum BM(n) is the set of isometry
classes of n-dimensional Banach spaces topologized by the
following metric best known in Functional Analysis as the
Banach-Mazur distance:

d([E ], [F ]) = ln ı́nf{‖T‖·‖T−1‖ | T : E → F linear isomorphism}.

These spaces were introduced in 1932 by S. Banach and they
continue to be of interest.

For each n ≥ 2, BM(n) is an infinite dimensional compact
AR.
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Question (A. Pelczyński)

Is the Banach-Mazur compactum BM(n) homeomorphic to the
Hilbert cube Q =

∏∞
n=1[−1, 1]?

If n = 2, NO [S. Antonyan, Ageev, Bogaty ∼= 2000].

Open for n ≥ 3.

Natalia Jonard Pérez Group actions on hyperspaces of convex sets and Banach-Mazur compacta



Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

Question (A. Pelczyński)
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Is the Banach-Mazur compactum BM(n) homeomorphic to the
Hilbert cube Q =

∏∞
n=1[−1, 1]?

If n = 2, NO [S. Antonyan, Ageev, Bogaty ∼= 2000].

Open for n ≥ 3.
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Let E be a n-dimensional Banach space. So E ∼= (Rn, f ), where
f : Rn → R is a norm.

Each norm f : Rn → R is related to its unitary closed ball

Bf = {x ∈ Rn | f (x) ≤ 1}.

Each Bf corresponds to a point in B(n) where B(n) ⊂ cb(Rn)
denotes the family of all centrally symmetric convex bodies.
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If F = (Rn, f ) and E = (Rn, h) are n-dimensional Banach spaces,
the isometry class of F , [F ] is the isometry class of E if and only if
there is a linear transformation g : Rn → Rn such that g(Bf ) = Bh.
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Let us define in B(n) the following equivalence relationship:

A ∼ B ⇐⇒ A = gB, for some g ∈ GL(n).

Then, the Banach-Mazur compactum BM(n) is
homeomorphic to the quotient space B(n)/ ∼.

(S. Antonyan, 2000)

For every n ≥ 2, B(n) is homeomorphic to Rp × Q, where Q
denotes the Hilbert cube and p = n(n + 1)/2.
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In 1951 Macbeath studied the topology of the quotient space
cb(Rn)/ ∼, where A ∼ B iff there exists an affine transformation
g , such that g(A) = B.

A B

Macbeath proved that cb(Rn)/ ∼ is a compact metric space.
However, for n ≥ 2, the subspace cb(Rn) of cc(Rn) had not been
computed.
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Topological Transformation Groups

The equivalence relations ∼ defined above can be translated to the
language of topological transformation groups.

A continuous action of a topological group G on a topological
space X is a map θ : G × X → X such that

1 θ(e, x) = x ,

2 θ(g , θ(h, x)) = θ(gh, x),

for all x ∈ X , g , h ∈ G .

For every g ∈ G and x ∈ X , the element θ(g , x) is denoted by gx .
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Example

The group S1 = {z ∈ C : |z | = 1} acts on C by the complex
multiplication:

(z ,w)→ zw

w
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If a topological group G acts continuously on a topological
space X , we say that X is a G -space.

The set
G (x) = {gx | g ∈ G}

is the orbit of x (G -orbit).

If G (x) = {x}, then we say that x is a fixed point (G -fix).
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Orbit space

Definition

Let X be a G -space. Let us denote by X/G the set of all G -orbits
of X . The orbit space (G -orbit space) is the set X/G equipped
with the quotient topology.
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Let X and Y be G -spaces.

A map f : X → Y is equivariant (G -equivariant), if

f (gx) = gf (x), x ∈ X , g ∈ G .

xgx

f

G(x)

xgx

G(x)

f(x)
gf(x)=f(gx)

G(f(x))
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Let X be a G -space

A map f : X → Y is invariant if

f (gx) = f (x), x ∈ X , g ∈ G

xgx

f

G(x)

f(gx)=f(x)
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The map f : C→ C given by f (z) = 2z is S1-equivariant.

The map f : C→ [0,∞) given by f (z) = |z | is invariant.
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In the hyperspace B(n) we can define the following action of the
group GL(n):

GL(n)× B(n)→ B(n).

(g ,A)→ gA = {g(a) | a ∈ A}.

The quotient space B(n)/ ∼ becomes the orbit space

B(n)/GL(n)

and therefore the Banach-Mazur compactum BM(n) is
homeomorphic to B(n)/GL(n).
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Natalia Jonard Pérez Group actions on hyperspaces of convex sets and Banach-Mazur compacta



Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

In Topological Transformation Groups language, Macbeath’s
quotient space cb(Rn)/ ∼ is the orbit space cb(Rn)/Aff(n), where
Aff(n) is the group of all affine transformations of Rn acting by the
following correspondence rule:

Aff(n)× cb(Rn)→ cb(Rn)

(g ,A)→ gA = {g(a) | a ∈ A}.
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There exist many different representations of the Banach-Mazur
compactum BM(n) as orbit spaces of hyperspaces of convex sets.

We will study the action of Aff(n) on cb(Rn) in order to show
that cb(Rn) is homeomorphic to Q × Rn(n+3)/2 and
cb(Rn)/Aff (n) is homeomorphic to the Banach-Mazur
compactum BM(n).

We will see more geometric representations is of the
Banac-Mazur compactum BM(n).

Actions on hyperspaces of infinite dimensional spaces.
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The Löwner ellipsoid

For every compact and convex body A ∈ cb(Rn) there exists a
unique minimal volume ellipsoid l(A) containing A. The ellipsoid
l(A) is usually called the Löwner ellipsoid of A.
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For every A ∈ cb(Rn) there exists an affine transformation
g ∈ Aff(n) such that

l(A) = gBn

where Bn is the unitary euclidean ball.

A

Thus, l(g−1A) = g−1l(A) = g−1gBn = Bn.
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For every n ≥ 2 lets denote by L(n) the following set:

L(n) = {A ∈ cb(Rn) | l(A) = Bn}.
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Natalia Jonard Pérez Group actions on hyperspaces of convex sets and Banach-Mazur compacta



Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

For every n ≥ 2 lets denote by L(n) the following set:

L(n) = {A ∈ cb(Rn) | l(A) = Bn}.
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Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

1 L(n) is O(n)-invariant,

2 Aff(n)(L(n)) = cb(Rn), i.e., for every A ∈ cb(Rn) there exists
B ∈ L(n) such that B = gA for certain g ∈ Aff(n).

3 L(n) is compact cb(Rn),
4 If A ∈ L(n) and g ∈ Aff(n) \ O(n) then

Bn 6= gBn = gl(A) = l(gA)

and hence L(n) ∩ gL(n) = ∅.
L(n) is a global O(n)-slice
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Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

A

(S.A., N.J.)

There exists a continuous retraction r : cb(Rn)→ L(n) such that

r(A) = gA for some g ∈ Aff(n).

r is O(n)-invariant, i.e., r(hA) = hr(A) for every h ∈ O(n).
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The induced map r̃ : cb(Rn)/Aff(n)→ L(n)/O(n) given by:

r̃(Aff(n)(A)) = O(n)(r(A)).

is a well defined homeomorphism.

cb(Rn)/Aff(n) ∼= L(n)/O(n)
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Let us denote by E (n) the Aff(n)-orbit of Bn.

E (n) is the subset of cb(Rn) consisting of all n-dimensional
ellipsoids of Rn.

The map l : cb(Rn)→ E (n) which assigns to each convex body its
Löwner ellipsoid is an Aff(n)-equivariant continuous retraction.
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L(n)

cb(Rn)

r
::

l $$

r×l // L(n)× E (n)

E (n)

(S.A. , N.J.)

The map r × l is a homeomorphism.

The map Aff(n)/O(n)→ E (n) given by

gO(n)→ gBn

is a homeomorphism
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Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

Corollary

cb(Rn) is homeomorphic to L(n)× Aff(n)/O(n).
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Corollary

cb(Rn) is homeomorphic to L(n)× Rn(n+3)/2.

Question

What is L(n).
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Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

(S.A., N.J.)

L(n) is a Hilbert cube where O(n) acts in such way that:

1 L(n) is an O(n)-AR with a unique O(n)-fixed point Bn,

2 L(n) is strictly O(n)-contractible to Bn,

3 For a closed subgroup K ⊂ O(n), the set L(n)K of all K-fixed
points equals the singleton {Bn} if and only if K acts
transitively on the unit sphere Sn−1, and L(n)K is
homeomorphic to the Hilbert cube whenever L(n)K 6= {Bn},

A group G acts transitively on X if G (x) = X for every x ∈ X .
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points equals the singleton {Bn} if and only if K acts
transitively on the unit sphere Sn−1, and L(n)K is
homeomorphic to the Hilbert cube whenever L(n)K 6= {Bn},

4 L(n)/K is homeomorphic to the Hilbert cube if K ⊂ O(n)
acts non-transitively on the sphere Sn−1

5 For any closed subgroup K ⊂ O(n), the K -orbit space
L0(n)/K is a Q-manifold, where L0(n) = L(n) \ {Bn}.

A Q manifold is a separable space M which is locally
homeomorphic to the Hilbert cube Q.
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L(n) is a Hilbert cube where O(n) acts in such way that:

1 L(n) is an O(n)-AR with a unique O(n)-fixed point Bn,

2 L(n) is strictly O(n)-contractible to Bn,

3 For a closed subgroup K ⊂ O(n), the set L(n)K of all K-fixed
points equals the singleton {Bn} if and only if K acts
transitively on the unit sphere Sn−1, and L(n)K is
homeomorphic to the Hilbert cube whenever L(n)K 6= {Bn},

4 L(n)/K is homeomorphic to the Hilbert cube if K ⊂ O(n)
acts non-transitively on the sphere Sn−1

5 For any closed subgroup K ⊂ O(n), the K -orbit space
L0(n)/K is a Q-manifold, where L0(n) = L(n) \ {Bn}.

A Q manifold is a separable space M which is locally
homeomorphic to the Hilbert cube Q.
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Corollary

cb(Rn) is homeomorphic to Q × Rn(n+3)/2.
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Theorem (S. Antonyan, 2007)

Let the orthogonal group O(n) act on a Hilbert Cube X in such
way that:

1 X is an O(n)-AR with a unique O(n)-fixed point ∗,
2 X is strictly O(n)-contractible to ∗,
3 For a closed subgroup K ⊂ O(n), the set XK = {∗} if and

only if K acts transitively on the unit sphere Sn−1, and XK is
homeomorphic to the Hilbert cube whenever XK 6= {∗},

4 For any closed subgroup K ⊂ O(n), the K -orbit space X0/K ,
is a Q-manifold, where X0 = X \ {∗}.

then the O(n)-orbit space X/O(n) is homeomorphic to the
Banach-Mazur compactum BM(n).
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Corollary

L(n)/O(n) is homeomorphic to the Banach-Mazur compactum
BM(n).

Corollary

cb(Rn)/Aff(n) is homeomorphic to the Banach-Mazur compactum
BM(n).
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2S
n−1

= {A ⊂ Sn−1 | A is compact}

2S
n−1
/O(n) ∼= BM(n).
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M(n)

Let us denote by M(n) the subspace of cc(Rn) consisting of all
A ∈ cc(Rn) such that

máx
a∈A
‖a‖ = 1.

M(n) is the hyperspace of all compact convex subsets A ⊂ Bn such
that A ∩ Sn−1 6= ∅.
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Properties of M(n)

M(n) is a O(n)-invariant subspace of cc(Rn) which satisfies the
following properties:

1 M(n) is an O(n)-AR with a unique O(n)-fixed point Bn,

2 M(n) is strictly O(n)-contractible to Bn,

3 For a closed subgroup K ⊂ O(n), the set M(n)K equals the
singleton {Bn} if and only if K acts transitively on the unit
sphere Sn−1, and M(n)K is homeomorphic to the Hilbert cube
whenever M(n)K 6= {Bn},

4 For any closed subgroup K ⊂ O(n), the K -orbit space
M0(n)/K is a Q-manifold, where M0(n) = M(n) \ {Bn}

5 If K ⊂ O(n) acts nontransitively on the sphere Sn−1, then the
K -orbit space M(n)/K is a Hilbert cube

6 M(n)/O(n) is homeomorphic to the Banach-Mazur
compactum BM(n).
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cc(Bn)

Theorem (Nadler, Quinn, and Stavrakas (1979))

For n ≥ 2, cc(Bn) is homeomorphic to the Hilbert cube
Q =

∏∞
n=1[−1, 1].

Question (Antonyan)

What is the relationship between the orbit space cc(Bn)/O(n) and
the Banach-Mazur compactum BM(n)?
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Rn is O(n)-homeomorphic to the cone over Sn−1:

Bn ∼=O(n) Sn−1 × [0, 1]/{0}.

Bn

Sn−1

This conic structure will induce a conic structure in cc(Bn). In this
case, the roll of the sphere Sn−1 is played by the Hyperspace M(n).
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Theorem

The hyperspace cc(Bn) is O(n)-homeomorphic to the cone over
M(n).

cc(Bn) ∼=O(n) M(n)× [0, 1]/{0}.

Theorem

For every closed subgroup K ⊂ O(n), the K -orbit space cc(Bn)/K
is homeomorphic to the cone over M(n)/K
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Corollary

For every closed subgroup K ⊂ O(n) that acts nontransitively on
Sn−1, the orbit space cc(Bn)/K is homeomorphic to the Hilbert
cube. In particular cc(Bn) is homeomorphic to the Hilbert cube.

Question

What is the relationship between the Banach-Mazur compactum
BM(n) and the orbit space cc(Bn)/O(n)?

Corollary

The orbit space cc(Bn)/O(n) is homeomorphic to the cone over
BM(n).
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Question

[A . Pelczyński] If n ≥ 3, Is the Banach-Mazur compactum BM(n)
homeomorphic to the Hilbert cube?

Theorem (T. L. Lay, J. J. Walsh, 1979)

If X is a compact AR then X is homeomorphic to its cone if and
only if X ∼= Q.

Question

If n ≥ 3, Are cc(Bn)/O(n) and M(n)/O(n) homeomorphic spaces?
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Let L be a topological linear space and K ⊂ L a convex metric
subspace of L.

Let G be a compact topological group acting on K by means
of affine transformations, i.e.,

g(tx + (1− t)y) = tgx + (1− t)gy x , y ∈ K , g ∈ G .

The action of G on K induces a continuous action cc(K ) in a
natural way:

(g ,A)→ gA = {ga | a ∈ A}

What is the topological structure of the orbit space cc(K )/G ?
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Theorem (S. Antonyan, S. Juárez, N. J)

Let L be a separable Fréchet space and let G be a compact group
acting continuously and affinely on L. If the set of G -fixed points
of cc(L) is non locally compact, then cc(L)/G is homeomorphic to
the infinite dimensional separable Hilbert space `2.
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Theorem (S. A, S. J, N. J.)

Let K be a Keller compactum and G be a compact group acting
continuously and affinely on K . If K has a G -fixed point in the
radial interior of K , then cc(K )/G is homeomorphic to the Hilbert
cube Q =

∏
n∈N[−1, 1].

A Keller compactum K is an infinite dimensional compact and
convex subset of a topological linear space for which there exists
an affine embedding j : K → `2.

The radial interior of K is the
set of all points x ∈ K such
that for every other z ∈ K
there exists t < 0 with
x + t(z − x) ∈ K .
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Theorem (S. A, S. J, N. J.)

Let K be a Keller compactum and G be a compact group acting
continuously and affinely on K . If K has a G -fixed point in the
radial interior of K , then cc(K )/G is homeomorphic to the Hilbert
cube Q =

∏
n∈N[−1, 1].

A Keller compactum K is an infinite dimensional compact and
convex subset of a topological linear space for which there exists
an affine embedding j : K → `2.

The radial interior of K is the
set of all points x ∈ K such
that for every other z ∈ K
there exists t < 0 with
x + t(z − x) ∈ K .

x

z

x+t(z-x)
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If K is centrally symmetric, then the center of symmetry is a
G -fixed point and lies in the radian interior of K

Corollary (S. A, S. J, N. J)

Let K be a centrally symmetric Keller compactum and let G be a
compact group acting continuously and affinely on K . Then the
orbit space cc(K )/G is homeomorphic to the Hilbert cube
Q =

∏
n∈N[−1, 1].

If G is the trivial group, then cc(K )/G ∼= cc(K ).

Corollary

If K is a Keller compactum with non-empty radial interior, then
cc(K ) is homeomorphic to the Hilbert cube.
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Proof

Theorem (Toruńczyk)

Let M be a compact metric space. M is homeomorphic to the
Hilbert cube if and only if the following conditions hold:

1 M is an AR (M is a retract of every metric space containing
M as a closed subset).

2 For every ε > 0, there exist two maps f , g : M → M such that

f (M) ∩ g(M) = ∅
d(f , 1M) < ε and d(g , 1M) < ε
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If X and Y are G -spaces and f : X → Y is G -equivariant, then the
map

f̃ : X/G → Y /G

given by
f̃
(
G (x)

)
= G (f (x)).

is well defined and continuous
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If (X , d) is a metric G -space and the metric is invariant
(d(gx , gy) = d(x , y)), then

d∗
(
G (x),G (y)

)
= ı́nf{d(x ′, y ′) | x ′ ∈ G (x), y ′ ∈ G (y)}

is a compatible metric on X/G such that

d∗(G (x),G (y)) ≤ d(x , y)
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There exist a good invariant metric d on K such that dH is
G -invariant.

It is enough to construct two equivariant maps
f , g : cc(K )→ cc(K ) satisfying:

f
(
cc(K )

)
∩ g
(
cc(K )

)
) = ∅

d(f , 1cc(K)) < ε and d(g , 1cc(K)) < ε

Natalia Jonard Pérez Group actions on hyperspaces of convex sets and Banach-Mazur compacta



Introduction and Motivation Topological transformation groups cb(Rn) More representations of BM(n) The infinite dimensional case

f : cc(K )→ cc(K )

f (A) = {x ∈ K | d(x ,A) ≤ ε/2}

K

f (A) intersects the radial boundary of K (the complement of the
radial interior)
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Let x0 be a G -fixed point in the radial interior of K

K

Pick t ∈ (0, 1) such that d(x , x0 + t(x − x0)) ≤ ε/2 for every
x ∈ K .
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Let x0 be a G -fixed point in the radial interior of K

K

X0

X

x +t(x-x )0 0

Pick t ∈ (0, 1) such that d(x , x0 + t(x − x0)) ≤ ε/2 for every
x ∈ K .
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g : cc(K )→ cc(K )

g(A) = x0 + t(A− x0)

K

X0

g(A) is completely contained in the radial interior of K .
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Final Question

If K has an empty radial interior, which is the topological structure
of cc(K )/G ?
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Thank you for your attention!
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