Group actions on hyperspaces of convex sets and Banach-Mazur compacta

Natalia Jonard Pérez

Joint work with Sergey Antonyan and Saúl Júarez Ordóñez

Universidad Nacional Autónoma de México, Universidad de Murcia

November 7th 2013, Valencia

Preliminary definitions

Given a Banach space L and K ⊂ L a convex subset, we denote by cc(L) the hyperspace of all compact convex subsets of K equipped with the Hausdorff metric:

$$d_H(A,B) = \max\left\{\sup_{b\in B} d(b,A), \sup_{a\in A} d(a,B)\right\},$$

where $d(b, A) = \inf\{d(b, a) \mid a \in A\}$.

Preliminary definitions

Given a Banach space L and K ⊂ L a convex subset, we denote by cc(L) the hyperspace of all compact convex subsets of K equipped with the Hausdorff metric:

$$d_{H}(A,B) = \max\left\{\sup_{b\in B} d(b,A), \sup_{a\in A} d(a,B)\right\},$$

where $d(b, A) = \inf\{d(b, a) \mid a \in A\}$.

• We denote by \mathbb{B}^n the unitary euclidean ball, i.e.

$$\mathbb{B}^n = \{z \in \mathbb{R}^n \mid ||x|| \le 1\}$$

where $\|\cdot\|$ denotes the euclidean norm.

 By a convex body in ℝⁿ we understand a compact convex subset of ℝⁿ with a non empty interior.

- By a convex body in ℝⁿ we understand a compact convex subset of ℝⁿ with a non empty interior.
- Let cb(ℝⁿ) be the subspace of cc(ℝⁿ) consisting of all convex bodies.

Banach Mazur Compacta

• The Banach-Mazur compactum BM(n) is the set of isometry classes of *n*-dimensional Banach spaces topologized by the following metric best known in Functional Analysis as the Banach-Mazur distance:

 $d([E], [F]) = \ln \inf\{ \|T\| \cdot \|T^{-1}\| \mid T : E \to F \text{ linear isomorphism} \}.$

Banach Mazur Compacta

• The Banach-Mazur compactum BM(n) is the set of isometry classes of *n*-dimensional Banach spaces topologized by the following metric best known in Functional Analysis as the Banach-Mazur distance:

 $d([E], [F]) = \ln \inf\{ \|T\| \cdot \|T^{-1}\| \mid T : E \to F \text{ linear isomorphism} \}.$

• These spaces were introduced in 1932 by S. Banach and they continue to be of interest.

Banach Mazur Compacta

• The Banach-Mazur compactum BM(n) is the set of isometry classes of *n*-dimensional Banach spaces topologized by the following metric best known in Functional Analysis as the Banach-Mazur distance:

 $d([E], [F]) = \ln \inf\{ \|T\| \cdot \|T^{-1}\| \mid T : E \to F \text{ linear isomorphism} \}.$

- These spaces were introduced in 1932 by S. Banach and they continue to be of interest.
- For each $n \ge 2$, BM(n) is an infinite dimensional compact AR.

Question (A. Pelczyński)

Is the Banach-Mazur compactum BM(n) homeomorphic to the Hilbert cube $Q = \prod_{n=1}^{\infty} [-1, 1]$?

Question (A. Pelczyński)

Is the Banach-Mazur compactum BM(n) homeomorphic to the Hilbert cube $Q = \prod_{n=1}^{\infty} [-1, 1]$?

• If n = 2, NO [S. Antonyan, Ageev, Bogaty ≈ 2000].

Question (A. Pelczyński)

Is the Banach-Mazur compactum BM(n) homeomorphic to the Hilbert cube $Q = \prod_{n=1}^{\infty} [-1, 1]$?

If n = 2, NO [S. Antonyan, Ageev, Bogaty ≈ 2000].
Open for n ≥ 3.

Let *E* be a *n*-dimensional Banach space. So $E \cong (\mathbb{R}^n, f)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a norm.

Natalia Jonard Pérez

$$B_f = \{x \in \mathbb{R}^n \mid f(x) \le 1\}.$$

$$B_f = \{x \in \mathbb{R}^n \mid f(x) \le 1\}.$$

$$B_f = \{x \in \mathbb{R}^n \mid f(x) \le 1\}.$$

$$B_f = \{x \in \mathbb{R}^n \mid f(x) \le 1\}.$$

$$B_f = \{x \in \mathbb{R}^n \mid f(x) \le 1\}.$$

[F]=[E]

Natalia Jonard Pérez

• Let us define in $\mathcal{B}(n)$ the following equivalence relationship:

$$A \sim B \iff A = gB$$
, for some $g \in GL(n)$.

• Let us define in $\mathcal{B}(n)$ the following equivalence relationship:

$$A \sim B \iff A = gB$$
, for some $g \in GL(n)$.

 Then, the Banach-Mazur compactum BM(n) is homeomorphic to the quotient space B(n)/~. • Let us define in $\mathcal{B}(n)$ the following equivalence relationship:

$$A \sim B \iff A = gB$$
, for some $g \in GL(n)$.

 Then, the Banach-Mazur compactum BM(n) is homeomorphic to the quotient space B(n)/ ∼.

(S. Antonyan, 2000)

For every $n \ge 2$, $\mathcal{B}(n)$ is homeomorphic to $\mathbb{R}^p \times Q$, where Q denotes the Hilbert cube and p = n(n+1)/2.

Natalia Jonard Pérez

Macbeath proved that $cb(\mathbb{R}^n)/\sim$ is a compact metric space.

Macbeath proved that $cb(\mathbb{R}^n)/\sim$ is a compact metric space. However, for $n \ge 2$, the subspace $cb(\mathbb{R}^n)$ of $cc(\mathbb{R}^n)$ had not been computed.

Topological Transformation Groups

The equivalence relations \sim defined above can be translated to the language of topological transformation groups.

Topological Transformation Groups

The equivalence relations \sim defined above can be translated to the language of topological transformation groups.

A continuous action of a topological group G on a topological space X is a map $\theta: G \times X \to X$ such that

•
$$\theta(e, x) = x$$
,
• $\theta(g, \theta(h, x)) = \theta(gh, x)$,
for all $x \in X$, $g, h \in G$.

Topological Transformation Groups

The equivalence relations \sim defined above can be translated to the language of topological transformation groups.

A continuous action of a topological group G on a topological space X is a map $\theta: G \times X \to X$ such that

• $\theta(e, x) = x$, • $\theta(g, \theta(h, x)) = \theta(gh, x)$, for all $x \in X$, $g, h \in G$.

For every $g \in G$ and $x \in X$, the element $\theta(g, x)$ is denoted by gx.

Example

The group $\mathbb{S}^1=\{z\in\mathbb{C}\ :\ |z|=1\}$ acts on \mathbb{C} by the complex multiplication:

 $(z, w) \rightarrow zw$

Natalia Jonard Pérez

Example

The group $\mathbb{S}^1=\{z\in\mathbb{C}\ :\ |z|=1\}$ acts on \mathbb{C} by the complex multiplication:

 $(z, w) \rightarrow zw$

200

• If a topological group G acts continuously on a topological space X, we say that X is a G-space.
- If a topological group G acts continuously on a topological space X, we say that X is a G-space.
- The set

$$G(x) = \{gx \mid g \in G\}$$

is the orbit of x (*G*-orbit).

- If a topological group G acts continuously on a topological space X, we say that X is a G-space.
- The set

$$G(x) = \{gx \mid g \in G\}$$

is the orbit of x (*G*-orbit).

• If $G(x) = \{x\}$, then we say that x is a fixed point (G-fix).

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Introduction and Motivation Topological transformation groups $cb(\mathbb{R}^n)$ More representations of BM(n) The infinite dimensio

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Introduction and Motivation Topological transformation groups $cb(\mathbb{R}^n)$ More representations of BM(n) The infinite dimensio

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Orbit space

Definition

Let X be a G-space. Let us denote by X/G the set of all G-orbits of X. The orbit space (G-orbit space) is the set X/G equipped with the quotient topology.

Introduction and Motivation Topological transformation groups $cb(\mathbb{R}^n)$ More representations of BM(n) The infinite dimensio

Let X and Y be G-spaces.

• A map $f : X \to Y$ is equivariant (*G*-equivariant), if

$$f(gx) = gf(x), \qquad x \in X, \ g \in G.$$

• The map $f: \mathbb{C} \to \mathbb{C}$ given by f(z) = 2z is \mathbb{S}^1 -equivariant.

- The map $f : \mathbb{C} \to \mathbb{C}$ given by f(z) = 2z is \mathbb{S}^1 -equivariant.
- The map $f : \mathbb{C} \to [0,\infty)$ given by f(z) = |z| is invariant.

In the hyperspace $\mathcal{B}(n)$ we can define the following action of the group GL(n):

$$GL(n) imes \mathcal{B}(n)
ightarrow \mathcal{B}(n).$$

 $(g, A)
ightarrow gA = \{g(a) \mid a \in A\}.$

In the hyperspace $\mathcal{B}(n)$ we can define the following action of the group GL(n):

$$GL(n) imes \mathcal{B}(n) o \mathcal{B}(n).$$

 $(g, A) o gA = \{g(a) \mid a \in A\}.$

The quotient space $\mathcal{B}(n)/\sim$ becomes the orbit space

 $\mathcal{B}(n)/GL(n)$

and therefore the Banach-Mazur compactum BM(n) is homeomorphic to $\mathcal{B}(n)/GL(n)$.

In Topological Transformation Groups language, Macbeath's quotient space $cb(\mathbb{R}^n)/\sim$ is the orbit space $cb(\mathbb{R}^n)/\operatorname{Aff}(n)$, where $\operatorname{Aff}(n)$ is the group of all affine transformations of \mathbb{R}^n acting by the following correspondence rule:

 $\operatorname{Aff}(n) imes cb(\mathbb{R}^n) o cb(\mathbb{R}^n)$ $(g, A) o gA = \{g(a) \mid a \in A\}.$

 We will study the action of Aff(n) on cb(ℝⁿ) in order to show that cb(ℝⁿ) is homeomorphic to Q × ℝ^{n(n+3)/2} and cb(ℝⁿ)/Aff(n) is homeomorphic to the Banach-Mazur compactum BM(n).

- We will study the action of Aff(n) on cb(ℝⁿ) in order to show that cb(ℝⁿ) is homeomorphic to Q × ℝ^{n(n+3)/2} and cb(ℝⁿ)/Aff(n) is homeomorphic to the Banach-Mazur compactum BM(n).
- We will see more geometric representations is of the Banac-Mazur compactum BM(n).

- We will study the action of Aff(n) on cb(ℝⁿ) in order to show that cb(ℝⁿ) is homeomorphic to Q × ℝ^{n(n+3)/2} and cb(ℝⁿ)/Aff(n) is homeomorphic to the Banach-Mazur compactum BM(n).
- We will see more geometric representations is of the Banac-Mazur compactum BM(n).
- Actions on hyperspaces of infinite dimensional spaces.

The Löwner ellipsoid

For every compact and convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid I(A) containing A. The ellipsoid I(A) is usually called the Löwner ellipsoid of A.

The Löwner ellipsoid

For every compact and convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid I(A) containing A. The ellipsoid I(A) is usually called the Löwner ellipsoid of A.

l(gA) = gl(A) for every $g \in Aff(n)$, and $A \in cb(\mathbb{R}^n)$.

$$l(A) = g\mathbb{B}^n$$

$$l(A) = g\mathbb{B}^n$$

$$l(A) = g\mathbb{B}^n$$

$$l(A) = g\mathbb{B}^n$$

$$I(A) = g\mathbb{B}^n$$

where \mathbb{B}^n is the unitary euclidean ball.

Thus,
$$l(g^{-1}A) = g^{-1}l(A) = g^{-1}g\mathbb{B}^n = \mathbb{B}^n.$$

$$I(A) = g\mathbb{B}^n$$

where \mathbb{B}^n is the unitary euclidean ball.

Thus,
$$I(g^{-1}A) = g^{-1}I(A) = g^{-1}g\mathbb{B}^n = \mathbb{B}^n$$
.

$$L(n) = \{A \in cb(\mathbb{R}^n) \mid I(A) = \mathbb{B}^n\}.$$

$$L(n) = \{A \in cb(\mathbb{R}^n) \mid I(A) = \mathbb{B}^n\}.$$

$$L(n) = \{A \in cb(\mathbb{R}^n) \mid I(A) = \mathbb{B}^n\}.$$

$$L(n) = \{A \in cb(\mathbb{R}^n) \mid I(A) = \mathbb{B}^n\}.$$

Introduction and Motivation Topological transformation groups $cb(\mathbb{R}^n)$ More representations of BM(n) The infinite dimensio

Output Aff(n)(L(n)) = cb(ℝⁿ), i.e., for every A ∈ cb(ℝⁿ) there exists B ∈ L(n) such that B = gA for certain g ∈ Aff(n).

- Output Aff(n)(L(n)) = cb(ℝⁿ), i.e., for every A ∈ cb(ℝⁿ) there exists B ∈ L(n) such that B = gA for certain g ∈ Aff(n).
- L(n) is compact $cb(\mathbb{R}^n)$,

- Output Aff(n)(L(n)) = cb(ℝⁿ), i.e., for every A ∈ cb(ℝⁿ) there exists B ∈ L(n) such that B = gA for certain g ∈ Aff(n).
- L(n) is compact $cb(\mathbb{R}^n)$,
- If $A \in L(n)$ and $g \in Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gI(A) = I(gA)$$

and hence $L(n) \cap gL(n) = \emptyset$.

Output Aff(n)(L(n)) = cb(ℝⁿ), i.e., for every A ∈ cb(ℝⁿ) there exists B ∈ L(n) such that B = gA for certain g ∈ Aff(n).

•
$$L(n)$$
 is compact $cb(\mathbb{R}^n)$,

• If $A \in L(n)$ and $g \in Aff(n) \setminus O(n)$ then

$$\mathbb{B}^n \neq g\mathbb{B}^n = gI(A) = I(gA)$$

and hence $L(n) \cap gL(n) = \emptyset$. L(n) is a global O(n)-slice

Natalia Jonard Pérez

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ の Q ()

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ の Q ()

There exists a continuous retraction $r : cb(\mathbb{R}^n) \to L(n)$ such that

•
$$r(A) = gA$$
 for some $g \in Aff(n)$.

• r is O(n)-invariant, i.e., r(hA) = hr(A) for every $h \in O(n)$.

The induced map $\tilde{r} : cb(\mathbb{R}^n) / \operatorname{Aff}(n) \to L(n) / O(n)$ given by: $\tilde{r}(\operatorname{Aff}(n)(A)) = O(n)(r(A)).$

is a well defined homeomorphism.

The induced map $\tilde{r} : cb(\mathbb{R}^n) / \operatorname{Aff}(n) \to L(n) / O(n)$ given by: $\tilde{r}(\operatorname{Aff}(n)(A)) = O(n)(r(A)).$

is a well defined homeomorphism.

 $cb(\mathbb{R}^n)/\operatorname{Aff}(n)\cong L(n)/O(n)$

• Let us denote by E(n) the Aff(n)-orbit of \mathbb{B}^n .

- Let us denote by E(n) the Aff(n)-orbit of \mathbb{B}^n .
- *E*(*n*) is the subset of *cb*(ℝⁿ) consisting of all *n*-dimensional ellipsoids of ℝⁿ.

- Let us denote by E(n) the Aff(n)-orbit of \mathbb{B}^n .
- *E*(*n*) is the subset of *cb*(ℝⁿ) consisting of all *n*-dimensional ellipsoids of ℝⁿ.

The map $I : cb(\mathbb{R}^n) \to E(n)$ which assigns to each convex body its Löwner ellipsoid is an Aff(n)-equivariant continuous retraction.

(□) (□) (Ξ) (Ξ) (Ξ) Ξ

(S.A., N.J.)

The map $r \times I$ is a homeomorphism.

(S.A., N.J.)

The map $r \times I$ is a homeomorphism.

The map
$$Aff(n)/O(n) \rightarrow E(n)$$
 given by

$$gO(n) \to g\mathbb{B}^n$$

is a homeomorphism

Corollary $cb(\mathbb{R}^n)$ is homeomorphic to $L(n) \times Aff(n)/O(n)$.

Corollary $cb(\mathbb{R}^n)$ is homeomorphic to $L(n) \times Aff(n)/O(n)$.

Corollary $cb(\mathbb{R}^n)$ is homeomorphic to $L(n) \times \mathbb{R}^{n(n+3)/2}$.

Corollary

 $cb(\mathbb{R}^n)$ is homeomorphic to $L(n) \times \mathbb{R}^{n(n+3)/2}$.

Question What is L(n).

(S.A., N.J.) L(n) is a Hilbert cube where O(n) acts in such way that:

L(n) is a Hilbert cube where O(n) acts in such way that: L(n) is an O(n)-AR with a unique O(n)-fixed point Bⁿ,

- L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,

- L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup $K \subset O(n)$, the set $L(n)^K$ of all K-fixed points equals the singleton $\{\mathbb{B}^n\}$ if and only if K acts transitively on the unit sphere \mathbb{S}^{n-1} , and $L(n)^K$ is homeomorphic to the Hilbert cube whenever $L(n)^K \neq \{\mathbb{B}^n\}$,

L(n) is a Hilbert cube where O(n) acts in such way that:

- L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- So For a closed subgroup K ⊂ O(n), the set L(n)^K of all K-fixed points equals the singleton {Bⁿ} if and only if K acts transitively on the unit sphere Sⁿ⁻¹, and L(n)^K is homeomorphic to the Hilbert cube whenever L(n)^K ≠ {Bⁿ},

A group G acts transitively on X if G(x) = X for every $x \in X$.

- **(**) L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup $K \subset O(n)$, the set $L(n)^K$ of all K-fixed points equals the singleton $\{\mathbb{B}^n\}$ if and only if K acts transitively on the unit sphere \mathbb{S}^{n-1} , and $L(n)^K$ is homeomorphic to the Hilbert cube whenever $L(n)^K \neq \{\mathbb{B}^n\}$,

- **(**) L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup $K \subset O(n)$, the set $L(n)^K$ of all K-fixed points equals the singleton $\{\mathbb{B}^n\}$ if and only if K acts transitively on the unit sphere \mathbb{S}^{n-1} , and $L(n)^K$ is homeomorphic to the Hilbert cube whenever $L(n)^K \neq \{\mathbb{B}^n\}$,
- L(n)/K is homeomorphic to the Hilbert cube if K ⊂ O(n) acts non-transitively on the sphere Sⁿ⁻¹

- L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup $K \subset O(n)$, the set $L(n)^K$ of all K-fixed points equals the singleton $\{\mathbb{B}^n\}$ if and only if K acts transitively on the unit sphere \mathbb{S}^{n-1} , and $L(n)^K$ is homeomorphic to the Hilbert cube whenever $L(n)^K \neq \{\mathbb{B}^n\}$,
- L(n)/K is homeomorphic to the Hilbert cube if K ⊂ O(n) acts non-transitively on the sphere Sⁿ⁻¹
- For any closed subgroup $K \subset O(n)$, the K-orbit space $L_0(n)/K$ is a Q-manifold, where $L_0(n) = L(n) \setminus \{\mathbb{B}^n\}$.

L(n) is a Hilbert cube where O(n) acts in such way that:

- L(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 L(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup $K \subset O(n)$, the set $L(n)^K$ of all K-fixed points equals the singleton $\{\mathbb{B}^n\}$ if and only if K acts transitively on the unit sphere \mathbb{S}^{n-1} , and $L(n)^K$ is homeomorphic to the Hilbert cube whenever $L(n)^K \neq \{\mathbb{B}^n\}$,
- L(n)/K is homeomorphic to the Hilbert cube if K ⊂ O(n) acts non-transitively on the sphere Sⁿ⁻¹
- For any closed subgroup $K \subset O(n)$, the K-orbit space $L_0(n)/K$ is a Q-manifold, where $L_0(n) = L(n) \setminus \{\mathbb{B}^n\}$.

A Q manifold is a separable space M which is locally homeomorphic to the Hilbert cube Q.

Corollary $cb(\mathbb{R}^n)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3)/2}$.

Theorem (S. Antonyan, 2007)

Let the orthogonal group O(n) act on a Hilbert Cube X in such way that:

- X is an O(n)-AR with a unique O(n)-fixed point *,
- 2 X is strictly O(n)-contractible to *,
- So For a closed subgroup K ⊂ O(n), the set X^K = {*} if and only if K acts transitively on the unit sphere Sⁿ⁻¹, and X^K is homeomorphic to the Hilbert cube whenever X^K ≠ {*},
- So For any closed subgroup K ⊂ O(n), the K-orbit space X₀/K, is a Q-manifold, where X₀ = X \ {*}.

then the O(n)-orbit space X/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).
Corollary

L(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).

Corollary

L(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).

Corollary

 $cb(\mathbb{R}^n)/\operatorname{Aff}(n)$ is homeomorphic to the Banach-Mazur compactum BM(n).

the second s

and the second second

the second s

(a) the second s second se

$$2^{\mathbb{S}^{n-1}} = \{A \subset \mathbb{S}^{n-1} \mid A \text{ is compact}\}$$

$$2^{\mathbb{S}^{n-1}}/O(n)\cong BM(n).$$

Let us denote by M(n) the subspace of $cc(\mathbb{R}^n)$ consisting of all $A \in cc(\mathbb{R}^n)$ such that

$$\max_{a\in A}\|a\|=1.$$

M(n) is the hyperspace of all compact convex subsets $A \subset \mathbb{B}^n$ such that $A \cap \mathbb{S}^{n-1} \neq \emptyset$.

Properties of M(n)

M(n) is a O(n)-invariant subspace of $cc(\mathbb{R}^n)$ which satisfies the following properties:

Properties of M(n)

M(n) is a O(n)-invariant subspace of $cc(\mathbb{R}^n)$ which satisfies the following properties:

- M(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 M(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup K ⊂ O(n), the set M(n)^K equals the singleton {Bⁿ} if and only if K acts transitively on the unit sphere Sⁿ⁻¹, and M(n)^K is homeomorphic to the Hilbert cube whenever M(n)^K ≠ {Bⁿ},
- For any closed subgroup K ⊂ O(n), the K-orbit space M₀(n)/K is a Q-manifold, where M₀(n) = M(n) \ {Bⁿ}
- If K ⊂ O(n) acts nontransitively on the sphere Sⁿ⁻¹, then the K-orbit space M(n)/K is a Hilbert cube

Properties of M(n)

M(n) is a O(n)-invariant subspace of $cc(\mathbb{R}^n)$ which satisfies the following properties:

- M(n) is an O(n)-AR with a unique O(n)-fixed point \mathbb{B}^n ,
- 2 M(n) is strictly O(n)-contractible to \mathbb{B}^n ,
- For a closed subgroup K ⊂ O(n), the set M(n)^K equals the singleton {Bⁿ} if and only if K acts transitively on the unit sphere Sⁿ⁻¹, and M(n)^K is homeomorphic to the Hilbert cube whenever M(n)^K ≠ {Bⁿ},
- For any closed subgroup $K \subset O(n)$, the K-orbit space $M_0(n)/K$ is a Q-manifold, where $M_0(n) = M(n) \setminus \{B^n\}$
- If K ⊂ O(n) acts nontransitively on the sphere Sⁿ⁻¹, then the K-orbit space M(n)/K is a Hilbert cube
- M(n)/O(n) is homeomorphic to the Banach-Mazur compactum BM(n).

Theorem (Nadler, Quinn, and Stavrakas (1979)) For $n \ge 2$, $cc(\mathbb{B}^n)$ is homeomorphic to the Hilbert cube $Q = \prod_{n=1}^{\infty} [-1, 1]$.

Theorem (Nadler, Quinn, and Stavrakas (1979)) For $n \ge 2$, $cc(\mathbb{B}^n)$ is homeomorphic to the Hilbert cube $Q = \prod_{n=1}^{\infty} [-1, 1]$.

Question (Antonyan)

What is the relationship between the orbit space $cc(\mathbb{B}^n)/O(n)$ and the Banach-Mazur compactum BM(n)?

Introduction and Motivation Topological transformation groups $cb(\mathbb{R}^n)$ More representations of BM(n) The infinite dimensio

 \mathbb{R}^n is O(n)-homeomorphic to the cone over \mathbb{S}^{n-1} :

$$\mathbb{B}^n \cong_{O(n)} \mathbb{S}^{n-1} \times [0,1]/\{0\}.$$

This conic structure will induce a conic structure in $cc(\mathbb{B}^n)$. In this case, the roll of the sphere \mathbb{S}^{n-1} is played by the Hyperspace M(n).

Theorem

The hyperspace $cc(\mathbb{B}^n)$ is O(n)-homeomorphic to the cone over M(n).

 $cc(\mathbb{B}^n)\cong_{O(n)}M(n)\times [0,1]/\{0\}.$

Theorem

The hyperspace $cc(\mathbb{B}^n)$ is O(n)-homeomorphic to the cone over M(n).

 $cc(\mathbb{B}^n)\cong_{O(n)}M(n)\times [0,1]/\{0\}.$

Theorem

For every closed subgroup $K \subset O(n)$, the K-orbit space $cc(\mathbb{B}^n)/K$ is homeomorphic to the cone over M(n)/K

Corollary

For every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the orbit space $cc(\mathbb{B}^n)/K$ is homeomorphic to the Hilbert cube. In particular $cc(\mathbb{B}^n)$ is homeomorphic to the Hilbert cube.

Corollary

For every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} , the orbit space $cc(\mathbb{B}^n)/K$ is homeomorphic to the Hilbert cube. In particular $cc(\mathbb{B}^n)$ is homeomorphic to the Hilbert cube.

Question

What is the relationship between the Banach-Mazur compactum BM(n) and the orbit space $cc(\mathbb{B}^n)/O(n)$?

Corollary

The orbit space $cc(\mathbb{B}^n)/O(n)$ is homeomorphic to the cone over BM(n).

Question

[A . Pelczyński] If $n \ge 3$, Is the Banach-Mazur compactum BM(n) homeomorphic to the Hilbert cube?

Question

[A . Pelczyński] If $n \ge 3$, Is the Banach-Mazur compactum BM(n) homeomorphic to the Hilbert cube?

Theorem (T. L. Lay, J. J. Walsh, 1979)

If X is a compact AR then X is homeomorphic to its cone if and only if $X \cong Q$.

Question

[A . Pelczyński] If $n \ge 3$, Is the Banach-Mazur compactum BM(n) homeomorphic to the Hilbert cube?

Theorem (T. L. Lay, J. J. Walsh, 1979)

If X is a compact AR then X is homeomorphic to its cone if and only if $X \cong Q$.

Question

If $n \ge 3$, Are $cc(\mathbb{B}^n)/O(n)$ and M(n)/O(n) homeomorphic spaces?

Let *L* be a topological linear space and $K \subset L$ a convex metric subspace of *L*.

• Let G be a compact topological group acting on K by means of affine transformations, i.e.,

$$g(tx+(1-t)y)=tgx+(1-t)gy \quad x,y\in K, \quad g\in G.$$

Let *L* be a topological linear space and $K \subset L$ a convex metric subspace of *L*.

• Let G be a compact topological group acting on K by means of affine transformations, i.e.,

$$g(tx+(1-t)y)=tgx+(1-t)gy \quad x,y\in K, \quad g\in G.$$

 The action of G on K induces a continuous action cc(K) in a natural way:

$$(g,A) \rightarrow gA = \{ga \mid a \in A\}$$

Let *L* be a topological linear space and $K \subset L$ a convex metric subspace of *L*.

• Let G be a compact topological group acting on K by means of affine transformations, i.e.,

$$g(tx+(1-t)y)=tgx+(1-t)gy \quad x,y\in K, \quad g\in G.$$

 The action of G on K induces a continuous action cc(K) in a natural way:

$$(g,A) \rightarrow gA = \{ga \mid a \in A\}$$

What is the topological structure of the orbit space cc(K)/G?

Theorem (S. Antonyan, S. Juárez, N. J)

Let L be a separable Fréchet space and let G be a compact group acting continuously and affinely on L. If the set of G-fixed points of cc(L) is non locally compact, then cc(L)/G is homeomorphic to the infinite dimensional separable Hilbert space ℓ_2 .

Let K be a Keller compactum and G be a compact group acting continuously and affinely on K. If K has a G-fixed point in the radial interior of K, then cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$.

Let K be a Keller compactum and G be a compact group acting continuously and affinely on K. If K has a G-fixed point in the radial interior of K, then cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$.

A Keller compactum K is an infinite dimensional compact and convex subset of a topological linear space for which there exists an affine embedding $j : K \to \ell_2$.

Let K be a Keller compactum and G be a compact group acting continuously and affinely on K. If K has a G-fixed point in the radial interior of K, then cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$.

A Keller compactum K is an infinite dimensional compact and convex subset of a topological linear space for which there exists an affine embedding $j: K \to \ell_2$.

Let K be a Keller compactum and G be a compact group acting continuously and affinely on K. If K has a G-fixed point in the radial interior of K, then cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$.

A Keller compactum K is an infinite dimensional compact and convex subset of a topological linear space for which there exists an affine embedding $j: K \to \ell_2$.

Let K be a Keller compactum and G be a compact group acting continuously and affinely on K. If K has a G-fixed point in the radial interior of K, then cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$.

A Keller compactum K is an infinite dimensional compact and convex subset of a topological linear space for which there exists an affine embedding $j: K \to \ell_2$.

Let K be a Keller compactum and G be a compact group acting continuously and affinely on K. If K has a G-fixed point in the radial interior of K, then cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$.

A Keller compactum K is an infinite dimensional compact and convex subset of a topological linear space for which there exists an affine embedding $j: K \to \ell_2$.

Corollary (S. A, S. J, N. J)

Let K be a centrally symmetric Keller compactum and let G be a compact group acting continuously and affinely on K. Then the orbit space cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1].$

Corollary (S. A, S. J, N. J)

Let K be a centrally symmetric Keller compactum and let G be a compact group acting continuously and affinely on K. Then the orbit space cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1].$

If G is the trivial group, then $cc(K)/G \cong cc(K)$.

Corollary (S. A, S. J, N. J)

Let K be a centrally symmetric Keller compactum and let G be a compact group acting continuously and affinely on K. Then the orbit space cc(K)/G is homeomorphic to the Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1].$

If G is the trivial group, then $cc(K)/G \cong cc(K)$.

Corollary

If K is a Keller compactum with non-empty radial interior, then cc(K) is homeomorphic to the Hilbert cube.
Proof

Theorem (Toruńczyk)

Let M be a compact metric space. M is homeomorphic to the Hilbert cube if and only if the following conditions hold:

- M is an AR (M is a retract of every metric space containing M as a closed subset).
- **2** For every $\varepsilon > 0$, there exist two maps $f, g : M \to M$ such that

•
$$f(M) \cap g(M) = \emptyset$$

• $d(f, 1_M) < \varepsilon$ and $d(g, 1_M) < \varepsilon$

Proof

Theorem (Toruńczyk)

Let M be a compact metric space. M is homeomorphic to the Hilbert cube if and only if the following conditions hold:

 M is an AR (M is a retract of every metric space containing M as a closed subset).

② For every $\varepsilon > 0$, there exist two maps $f, g : M \to M$ such that

• $f(M) \cap g(M) = \emptyset$ • $d(f, 1_M) < \varepsilon$ and $d(g, 1_M) < \varepsilon$ If X and Y are G-spaces and $f: X \to Y$ is G-equivariant, then the map

$$\tilde{f}:X/G o Y/G$$

given by

$$\tilde{f}(G(x)) = G(f(x)).$$

is well defined and continuous

If
$$(X, d)$$
 is a metric G-space and the metric is invariant $(d(gx, gy) = d(x, y))$, then

$$d^*(G(x), G(y)) = \inf\{d(x', y') \mid x' \in G(x), y' \in G(y)\}$$

is a compatible metric on X/G such that

 $d^*(G(x),G(y)) \leq d(x,y)$

If
$$(X, d)$$
 is a metric *G*-space and the metric is invariant $(d(gx, gy) = d(x, y))$, then

$$d * (G(x), G(y)) = \inf\{d(x', y') \mid x' \in G(x), y' \in G(y)\}$$

is a compatible metric on X/G such that

 $d*(G(x),G(y)) \leq d(x,y)$

There exist a good invariant metric d on K such that d_H is G-invariant.

It is enough to construct two equivariant maps $f, g : cc(K) \rightarrow cc(K)$ satisfying:

- $f(cc(K)) \cap g(cc(K))) = \emptyset$
- $d(f, 1_{cc(K)}) < \varepsilon$ and $d(g, 1_{cc(K)}) < \varepsilon$

$$f: cc(K)
ightarrow cc(K)$$

 $f(A) = \{x \in K \mid d(x, A) \le \varepsilon/2\}$

$$f: cc(K)
ightarrow cc(K)$$

 $f(A) = \{x \in K \mid d(x, A) \le \varepsilon/2\}$

$$f: cc(K)
ightarrow cc(K)$$

 $f(A) = \{x \in K \mid d(x, A) \le arepsilon/2\}$

f(A) intersects the radial boundary of K (the complement of the radial interior)

• Pick $t \in (0,1)$ such that $d(x, x_0 + t(x - x_0)) \le \varepsilon/2$ for every $x \in K$.

• Pick $t \in (0,1)$ such that $d(x, x_0 + t(x - x_0)) \le \varepsilon/2$ for every $x \in K$.

• Pick $t \in (0,1)$ such that $d(x, x_0 + t(x - x_0)) \le \varepsilon/2$ for every $x \in K$.

$$g: cc(K) \to cc(K)$$
$$g(A) = x_0 + t(A - x_0)$$

(ロ) (回) (目) (目) (日) (の)

g(A) is completely contained in the radial interior of K.

Final Question

If K has an empty radial interior, which is the topological structure of cc(K)/G?

Introduction and Motivation Topological transformation groups $cb(\mathbb{R}^n)$ More representations of BM(n) The infinite dimensio

Thank you for your attention!

(ロ) (四) (注) (注) (注) (三)