Frames in Fréchet spaces

FNRS Group - Functional Analysis Esneux

Juan Miguel Ribera Puchades

Juan Miguel Ribera Puchades (UPV)

Frames in Fréchet spaces

Esneux, 12 Jun 2014

Index

Motivation

2 Schauder Frames

- Perturbation
- Duality
- Unconditional Schauder frames
- Example

The main point is the missing *flexibility*. The conditions for being a basis are so strong that:

- It is often impossible to construct bases with special properties;
- Even a slight modification of a basis might destroy the basis property.

The main point is the missing *flexibility*. The conditions for being a basis are so strong that:

- It is often impossible to construct bases with special properties;
- Even a slight modification of a basis might destroy the basis property.

A basis is characterized by the expansion property; this is, a basis $\{e_j\}_j$ for a normed vector space E allows us to represent every $x \in E$ as a (maybe infinite) *unique* linear combination of the basis elements,

$$x = \sum_{j=1}^m c_j e_j$$

The main point is the missing *flexibility*. The conditions for being a basis are so strong that:

- It is often impossible to construct bases with special properties;
- Even a slight modification of a basis might destroy the basis property.

A basis is characterized by the expansion property; this is, a basis $\{e_j\}_j$ for a normed vector space E allows us to represent every $x \in E$ as a (maybe infinite) *unique* linear combination of the basis elements,

$$x = \sum_{j=1}^{m} c_j e_j$$
 o $x = \sum_{j=1}^{\infty} c_j e_j$

with coefficients $\{c_j\}$ that depend linearly on x.

The main point is the missing *flexibility*. The conditions for being a basis are so strong that:

- It is often impossible to construct bases with special properties;
- Even a slight modification of a basis might destroy the basis property.

A basis is characterized by the expansion property; this is, a basis $\{e_j\}_j$ for a normed vector space E allows us to represent every $x \in E$ as a (maybe infinite) *unique* linear combination of the basis elements,

$$x = \sum_{j=1}^{m} c_j e_j$$
 o $x = \sum_{j=1}^{\infty} c_j e_j$

with coefficients $\{c_j\}$ that depend linearly on x. One might ask whether uniqueness is really needed?

Non-bases with the expansion property

Let $\{e_k\}_{k\in\mathbb{Z}} = \{e^{2\pi i k x}\}_{k\in\mathbb{Z}}$ be the orthonormal basis for the Hilbert space $L^2[0,1]$ with the following inner product associated $\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)} dx$.

Non-bases with the expansion property

Let $\{e_k\}_{k\in\mathbb{Z}} = \{e^{2\pi i k x}\}_{k\in\mathbb{Z}}$ be the orthonormal basis for the Hilbert space $L^2[0,1]$ with the following inner product associated $\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)} dx$.

We consider $I \subsetneq [0,1]$ a proper subinterval and we identify $L^2(I)$ as a subspace of $L^2[0,1]$ such that the functions are zero in $[0,1]\setminus I$.

A function $f \in L^2(I)$ is identified as a function $f \in L^2[0,1]$ such that $f = \sum_{k \in \mathbb{Z}} \langle f, e_k \rangle e_k$ in $L^2[0,1]$. We also have that $f = \sum_{k \in \mathbb{Z}} \langle f, e_k \rangle e_k$ en $L^2(I)$.

Non-bases with the expansion property

Let $\{e_k\}_{k\in\mathbb{Z}} = \{e^{2\pi i k x}\}_{k\in\mathbb{Z}}$ be the orthonormal basis for the Hilbert space $L^2[0,1]$ with the following inner product associated $\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)} dx$.

We consider $I \subsetneq [0,1]$ a proper subinterval and we identify $L^2(I)$ as a subspace of $L^2[0,1]$ such that the functions are zero in $[0,1]\setminus I$.

A function $f \in L^2(I)$ is identified as a function $f \in L^2[0,1]$ such that $f = \sum_{k \in \mathbb{Z}} \langle f, e_k \rangle e_k$ in $L^2[0,1]$. We also have that $f = \sum_{k \in \mathbb{Z}} \langle f, e_k \rangle e_k$ en $L^2(I)$.

However, $\{e_k\}_{k\in\mathbb{Z}}$ are not a basis for $L^2(I)$.

Non-bases with the expansion property

To see this, we define the function:

$$\widetilde{f}(x)=\left\{egin{array}{ccc} f(x) & ext{, if } x\in I \ 1 & ext{, if } x
ot\in I \end{array}
ight.$$
 then $\widetilde{f}=\sum_{k\in\mathbb{Z}}\langle\widetilde{f},e_k
angle e_k$ in $L^2[0,1].$

Non-bases with the expansion property

To see this, we define the function:

$$\widetilde{f}(x) = \left\{ egin{array}{cc} f(x) & , \mbox{ if } x \in I \ 1 & , \mbox{ if } x
ot \in I \end{array}
ight.$$
 then $\widetilde{f} = \sum_{k \in \mathbb{Z}} \langle \widetilde{f}, e_k \rangle e_k$ in $L^2[0,1]$.

By restricting to I, the expansion is also valid in $L^2(I)$; since $f = \tilde{f}$ on I, this shows that $f = \sum_{k \in \mathbb{Z}} \langle \tilde{f}, e_k \rangle e_k$ in $L^2(I)$.

Non-bases with the expansion property

To see this, we define the function:

$$\widetilde{f}(x) = \left\{ egin{array}{cc} f(x) & , \mbox{ if } x \in I \ 1 & , \mbox{ if } x
ot \in I \end{array}
ight.$$
 then $\widetilde{f} = \sum_{k \in \mathbb{Z}} \langle \widetilde{f}, e_k \rangle e_k$ in $L^2[0,1]$.

By restricting to I, the expansion is also valid in $L^2(I)$; since $f = \tilde{f}$ on I, this shows that $f = \sum_{k \in \mathbb{Z}} \langle \tilde{f}, e_k \rangle e_k$ in $L^2(I)$.

Thus are both non-identical expansions of f in $L^2(I)$ such that $\{\langle f, e_k \rangle\}_{k \in \mathbb{Z}} \neq \{\langle \tilde{f}, e_k \rangle\}_{k \in \mathbb{Z}}$.

Juan Miguel Ribera Puchades (UPV)

Frame theory applications

Frames theory is a research area in mathematics, computer science and engineering applied in many different fields as:

- Sampling theory.
- Speech processing.
- Biomedical signal processing.
- Wavelet theory.
- Time-frequency analysis. Applications in image and signal processing.

Frame theory applications

Frames theory is a research area in mathematics, computer science and engineering applied in many different fields as:

- Sampling theory.
- Speech processing.
- Biomedical signal processing.
- Wavelet theory.
- Time-frequency analysis. Applications in image and signal processing.

In particular, having more elements than needed for a basis turns out to have a certain noise suprissing effect.

Aim

Our aim is discuss unconditional frames on no normable Fréchet Spaces.

Juan Miguel Ribera Puchades (UPV)

Aim

Our aim is discuss unconditional frames on no normable Fréchet Spaces.

Schauder frames have been investigated by Casazza, Gröchenig,

Aim

Our aim is discuss unconditional frames on no normable Fréchet Spaces.

Schauder frames have been investigated by Casazza, Gröchenig, Carando, Lassalle, Schmidberg,

Juan Miguel Ribera Puchades (UPV)

Aim

Our aim is discuss unconditional frames on no normable Fréchet Spaces.

Schauder frames have been investigated by Casazza, Gröchenig, Carando, Lassalle, Schmidberg, Korobeĭnik, Taskinen and others.

Index

1 Motivation

Schauder Frames

- Perturbation
- Duality
- Unconditional Schauder frames
- Example

Let E be a Hausdorff locally convex space.

Juan Miguel Ribera Puchades (UPV)

Frames in Fréchet spaces

Let E be a Hausdorff locally convex space.

Definition

Let $\{x_j\}_{j=1}^\infty \subset E$ and let $\{x'_j\}_{j=1}^\infty \subset E'$, we say that $(\{x'_j\}, \{x_j\})$ is a Schauder frame of E if

$$x = \sum_{j=1}^{\infty} x_j'(x) x_j, \quad ext{ for all } x \in E,$$

the series converging in E.

Let E be a Hausdorff locally convex space.

Definition

Let $\{x_j\}_{j=1}^\infty \subset E$ and let $\{x'_j\}_{j=1}^\infty \subset E'$, we say that $(\{x'_j\}, \{x_j\})$ is a Schauder frame of E if

$$x = \sum_{j=1}^{\infty} x'_j(x) x_j,$$
 for all $x \in E$,

the series converging in E.

We denote by ω the space $\mathbb{K}^{\mathbb{N}}$ endowed by the product topology.

9 /

Let E be a Hausdorff locally convex space.

Definition

Let $\{x_j\}_{j=1}^\infty \subset E$ and let $\{x'_j\}_{j=1}^\infty \subset E'$, we say that $(\{x'_j\}, \{x_j\})$ is a Schauder frame of E if

$$x = \sum_{j=1}^{\infty} x'_j(x) x_j, \quad ext{ for all } x \in E,$$

the series converging in E.

We denote by ω the space $\mathbb{K}^{\mathbb{N}}$ endowed by the product topology. A sequence space is a lcs \bigwedge such that $\mathbb{K}^{(\mathbb{N})} \subset \bigwedge \subset \omega$, this last inclusion being continuous.

Example (Leont'ev, 1970's)

For every convex bounded set, $\Omega \subset \mathbb{C}$, there exists a sequence $\{x_j\}_{i=1}^{\infty} \subset \mathbb{C}$ such that, for every $f \in \mathcal{H}(\Omega)$,

$$f\left(z\right) = \sum_{j=1}^{\infty} c_j e^{x_j z}$$

is uniformly and absolutely convergent on compact sets.

Example (Leont'ev, 1970's)

For every convex bounded set, $\Omega \subset \mathbb{C}$, there exists a sequence $\{x_j\}_{i=1}^{\infty} \subset \mathbb{C}$ such that, for every $f \in \mathcal{H}(\Omega)$,

$$f\left(z\right) = \sum_{j=1}^{\infty} c_j e^{x_j z}$$

is uniformly and absolutely convergent on compact sets. The sequence $\{c_j\}_{i=1}^{\infty}$ is not unique, therefore it is not a basis.

Example (Leont'ev, 1970's)

For every convex bounded set, $\Omega \subset \mathbb{C}$, there exists a sequence $\{x_j\}_{i=1}^{\infty} \subset \mathbb{C}$ such that, for every $f \in \mathcal{H}(\Omega)$,

$$f\left(z\right) = \sum_{j=1}^{\infty} c_j e^{x_j z}$$

is uniformly and absolutely convergent on compact sets. The sequence $\{c_j\}_{i=1}^{\infty}$ is not unique, therefore it is not a basis.

Korobeĭnik, Y. F. and Melikhov, S. N. proved that, if the boundary of Ω is C^2 , there exist $\{c_j\}_{j=1}^{\infty}$ depending continuously of f (i.e. $c_j := u_j(f)$ where u_j is a linear and continuous operator). Therefore, we obtain a Schauder frame.

Example

Let *E* be a lcs with a Schauder basis $\{e_j\}_{j=1}^{\infty} \subset E$ and denote by $\{e'_j\}_{j=1}^{\infty} \subset E'$ the functional coefficients. Then $(\{e'_j\}, \{e_j\})$ is a Schauder frame for *E* such that $e'_i(e_i) = \delta_{j,i}$ for all $i, j \in \mathbb{N}$.

Juan Miguel Ribera Puchades (UPV)

Frames in Fréchet spaces

Esneux, 12 Jun 2014

Example

Let *E* be a lcs with a Schauder basis $\{e_j\}_{j=1}^{\infty} \subset E$ and denote by $\{e'_j\}_{j=1}^{\infty} \subset E'$ the functional coefficients. Then $(\{e'_j\}, \{e_j\})$ is a Schauder frame for *E* such that $e'_i(e_i) = \delta_{j,i}$ for all $i, j \in \mathbb{N}$.

Example

Let *E* be a lcs and let $P : E \to E$ be a continuous linear projection. If $(\{x'_j\}, \{x_j\})$ is a Schauder frame for *E*, then $(\{P'(x'_j)\}, \{P(x_j)\})$ is a Schauder frame for P(E).

From now on E always be a barrelled and complete Hausdorff locally convex space.

Barrelled locally convex spaces are those satisfying the uniform boundedness principle (Banach-Steinhaus' Theorem).

Example

Fréchet spaces (complete and metrizable locally convex spaces).

From now on E always be a barrelled and complete Hausdorff locally convex space.

Barrelled locally convex spaces are those satisfying the uniform boundedness principle (Banach-Steinhaus' Theorem).

Example

Fréchet spaces (complete and metrizable locally convex spaces).

Theorem

The following are equivalent:

Ø E admits a Schauder frame.

Juan Miguel Ribera Puchades (UPV)

From now on E always be a barrelled and complete Hausdorff locally convex space.

Barrelled locally convex spaces are those satisfying the uniform boundedness principle (Banach-Steinhaus' Theorem).

Example

Fréchet spaces (complete and metrizable locally convex spaces).

Theorem

The following are equivalent:

Ø E admits a Schauder frame.

E is isomorphic to a complemented subspace of a complete sequence space with Schauder basis.

Sketch of the Proof

1) \Rightarrow 2)

• We define an injective and continuous linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \{x'_j(x)\}_j. \end{array}$$

Sketch of the Proof

1) \Rightarrow 2)

• We define an injective and continuous linear map

$$egin{array}{rcl} U: E & \longrightarrow & \bigwedge \ x & \longrightarrow & U(x) := \{x'_j(x)\}_j. \end{array}$$

Where $\bigwedge := \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E\}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \{q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E)\},\$$

such that (\bigwedge, \mathcal{Q}) is complete.

Sketch of the Proof

1) \Rightarrow 2)

• We define an injective and continuous linear map

$$egin{array}{rcl} U: E & \longrightarrow & \bigwedge \ x & \longrightarrow & U(x) := \{x'_j(x)\}_j. \end{array}$$

Where $\bigwedge := \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E\}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \{q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E)\},\$$

such that (\bigwedge, \mathcal{Q}) is complete.

• And $S : \bigwedge \longrightarrow E$, $S(\{\alpha_j\}_j) := \sum_{j=1}^{\infty} \alpha_j x_j$, is a continuous linear map.

Sketch of the Proof

1) \Rightarrow 2)

• We define an injective and continuous linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \{x'_j(x)\}_j. \end{array}$$

Where $\bigwedge := \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E\}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \{q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E)\},\$$

such that (\bigwedge, \mathcal{Q}) is complete.

- And $S : \bigwedge \longrightarrow E$, $S(\{\alpha_j\}_j) := \sum_{j=1}^{\infty} \alpha_j x_j$, is a continuous linear map.
- From $S \circ U = I_E$ we conclude that U is an isomorphism into its range U(E)

Juan Miguel Ribera Puchades (UPV)
Schauder Frames

Sketch of the Proof

1) \Rightarrow 2)

• We define an injective and continuous linear map

$$\begin{array}{rccc} U: E & \longrightarrow & \bigwedge \\ x & \longrightarrow & U(x) := \{x'_j(x)\}_j. \end{array}$$

Where $\bigwedge := \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E\}$ is a sequence space endowed with the system of seminorms

$$\mathcal{Q} := \{q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in cs(E)\},\$$

such that (\bigwedge, \mathcal{Q}) is complete.

- And $S : \bigwedge \longrightarrow E$, $S(\{\alpha_j\}_j) := \sum_{j=1}^{\infty} \alpha_j x_j$, is a continuous linear map.
- From $S \circ U = I_E$ we conclude that U is an isomorphism into its range U(E) and $U \circ S$ is a projection of \bigwedge onto U(E).

Definition

A lcs *E* has the *bounded approximation property* (BAP) if there exists $\{A_j\}_{j\in J} \subset L(E, E)$ a net which is equicontinuous with dim $(A_j(E)) < \infty$ for every $j \in J$ and $\lim_{j\in J} A_j(x) = x$ for every $x \in E$. In other words, $A_j \to I$ in $L_s(E)$.

Definition

A lcs *E* has the *bounded approximation property* (BAP) if there exists $\{A_j\}_{j\in J} \subset L(E, E)$ a net which is equicontinuous with dim $(A_j(E)) < \infty$ for every $j \in J$ and $\lim_{j\in J} A_j(x) = x$ for every $x \in E$. In other words, $A_j \to I$ in $L_s(E)$.

Theorem (Pełczyński)

Let E be a separable Fréchet space, the following are equivalent:

O The bounded approximation property holds in *E*.

Definition

A lcs *E* has the *bounded approximation property* (BAP) if there exists $\{A_j\}_{j\in J} \subset L(E, E)$ a net which is equicontinuous with dim $(A_j(E)) < \infty$ for every $j \in J$ and $\lim_{j\in J} A_j(x) = x$ for every $x \in E$. In other words, $A_j \to I$ in $L_s(E)$.

Theorem (Pełczyński)

Let E be a separable Fréchet space, the following are equivalent:

- **O** The bounded approximation property holds in *E*.
- *E* is isomorphic to a complemented subspace of a complete sequence space with Schauder basis.

Definition

A lcs *E* has the *bounded approximation property* (BAP) if there exists $\{A_j\}_{j\in J} \subset L(E, E)$ a net which is equicontinuous with dim $(A_j(E)) < \infty$ for every $j \in J$ and $\lim_{j\in J} A_j(x) = x$ for every $x \in E$. In other words, $A_j \to I$ in $L_s(E)$.

Theorem (Pełczyński)

Let E be a separable Fréchet space, the following are equivalent:

- **4** The bounded approximation property holds in *E*.
- *E* is isomorphic to a complemented subspace of a complete sequence space with Schauder basis.
- *E* admits a Schauder frame.

Dubinsky (1981), Vogt (2010) gave examples of nuclear (hence separable) Fréchet spaces E which do not have the bounded approximation property. These separable Fréchet spaces E do not admit a Schauder frame.

Dubinsky (1981), Vogt (2010) gave examples of nuclear (hence separable) Fréchet spaces E which do not have the bounded approximation property. These separable Fréchet spaces E do not admit a Schauder frame.

Although by Komura-Komura's Theorem they are isomorphic to a subspace of the countable product $s^{\mathbb{N}}$ of copies of the space of rapidly decreasing sequence, that has a Schauder basis.

Perturbation Result

Theorem

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame of a complete lcs E. Then, if $\{y_j\}_{j=1}^{\infty}$ is a sequence in E satisfying that $\exists p_0 \in cs(E)$ such that for all $p \in cs(E)$ there is $C_p > 0$ with: (i) $\sum_{j=1}^{\infty} |x'_j(x)| p(x_j - y_j) \le p_0(x) C_p$ for each $x \in E$ and (ii) C_{p_0} can be chosen strictly smaller than 1,

Perturbation Result

Theorem

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame of a complete lcs E. Then, if $\{y_j\}_{j=1}^{\infty}$ is a sequence in E satisfying that $\exists p_0 \in cs(E)$ such that for all $p \in cs(E)$ there is $C_p > 0$ with: (i) $\sum_{j=1}^{\infty} |x'_j(x)| p(x_j - y_j) \leq p_0(x) C_p$ for each $x \in E$ and (ii) C_{p_0} can be chosen strictly smaller than 1, then, there exists $\{y'_j\}_{j=1}^{\infty}$ a sequence in E' such that $(\{y'_j\}, \{y_j\})$ is a Schauder frame for E.

Perturbation Result

Theorem

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame of a complete lcs E. Then, if $\{y_j\}_{j=1}^{\infty}$ is a sequence in E satisfying that $\exists p_0 \in cs(E)$ such that for all $p \in cs(E)$ there is $C_p > 0$ with: (i) $\sum_{j=1}^{\infty} |x'_j(x)| p(x_j - y_j) \leq p_0(x) C_p$ for each $x \in E$ and (ii) C_{p_0} can be chosen strictly smaller than 1, then, there exists $\{y'_j\}_{j=1}^{\infty}$ a sequence in E' such that $(\{y'_j\}, \{y_j\})$ is a Schauder frame for E.

It follows from a result of *Garnir*, *De Wilde*, *Schmets* related to the condition of invertibility of the operator I - T given an operator T.

Proposition

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame for a barrelled lcs E and let $\{x_j\}_j$ being bounded below (i.e. there exists $p \in cs(E)$ such that $p(x_j) \ge 1$ for every $j \in \mathbb{N}$). Then, $\{x'_j\}_j$ is equicontinuous in E'.

Example

Considering the system of seminorms $\{q_n\}_n$ for $C^{\infty}(K)$ given by $q_n(f) := \sup\{|f^{(\alpha)}(x)| : x \in K, |\alpha| \le n\}, n \in \mathbb{N}_0.$

Proposition

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame for a barrelled lcs E and let $\{x_j\}_j$ being bounded below (i.e. there exists $p \in cs(E)$ such that $p(x_j) \ge 1$ for every $j \in \mathbb{N}$). Then, $\{x'_j\}_j$ is equicontinuous in E'.

Example

Considering the system of seminorms $\{q_n\}_n$ for $C^{\infty}(K)$ given by $q_n(f) := \sup\{|f^{(\alpha)}(x)| : x \in K, |\alpha| \le n\}, n \in \mathbb{N}_0$. Since $q_0(e^{2\pi i \times \lambda^j}) = 1$ for every $x \in K$ and for every $(\lambda^j) \subset \mathbb{R}^p$ sequence,

Proposition

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame for a barrelled lcs E and let $\{x_j\}_j$ being bounded below (i.e. there exists $p \in cs(E)$ such that $p(x_j) \ge 1$ for every $j \in \mathbb{N}$). Then, $\{x'_j\}_j$ is equicontinuous in E'.

Example

Considering the system of seminorms $\{q_n\}_n$ for $C^{\infty}(K)$ given by $q_n(f) := \sup\{|f^{(\alpha)}(x)| : x \in K, |\alpha| \le n\}, n \in \mathbb{N}_0$. Since $q_0(e^{2\pi i x \lambda^j}) = 1$ for every $x \in K$ and for every $(\lambda^j) \subset \mathbb{R}^p$ sequence, by former lemma, we obtain that, for every $\{y_j\}_{j\in\mathbb{N}} \subset C^{\infty}(K)$ such that $\sum_{j=1}^{\infty} q_n(y_j - e^{2\pi i x \lambda^j}) < \infty$ for every $n \in \mathbb{N}$ with $\sum_{j=1}^{\infty} (y_j - e^{2\pi i x \lambda^j})$ being absolutely convergent in $C^{\infty}(K)$ for all $x \in K$

Proposition

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame for a barrelled lcs E and let $\{x_j\}_j$ being bounded below (i.e. there exists $p \in cs(E)$ such that $p(x_j) \ge 1$ for every $j \in \mathbb{N}$). Then, $\{x'_j\}_j$ is equicontinuous in E'.

Example

Considering the system of seminorms $\{q_n\}_n$ for $C^{\infty}(K)$ given by $q_n(f) := \sup\{|f^{(\alpha)}(x)| : x \in K, |\alpha| \le n\}, n \in \mathbb{N}_0$. Since $q_0(e^{2\pi i x \lambda^j}) = 1$ for every $x \in K$ and for every $(\lambda^j) \subset \mathbb{R}^p$ sequence, by former lemma, we obtain that, for every $\{y_j\}_{j\in\mathbb{N}} \subset C^{\infty}(K)$ such that $\sum_{j=1}^{\infty} q_n(y_j - e^{2\pi i x \lambda^j}) < \infty$ for every $n \in \mathbb{N}$ with $\sum_{j=1}^{\infty} (y_j - e^{2\pi i x \lambda^j})$ being absolutely convergent in $C^{\infty}(K)$ for all $x \in K$ then there exists $\{y'_n\} \subset C^{\infty}(K)'$ such that $(\{y'_n\}, \{y_n\})$ is a Schauder frame for $C^{\infty}(K)$.

By previous result, observe that, if $x'_1(x_1) \neq 1$ the map $x \to \sum_{j=2}^{\infty} x'_j(x)x_j$ is invertible as 1 is not an eigenvalue of the rank one operator $x \to x'_1(x)x_1$.

By previous result, observe that, if $x'_1(x_1) \neq 1$ the map $x \to \sum_{j=2}^{\infty} x'_j(x)x_j$ is invertible as 1 is not an eigenvalue of the rank one operator $x \to x'_1(x)x_1$.

Hence there exists $\{y'_j\}_j \subset E'$ such that $(\{y'_j\}_j, \{x_{j+1}\}_j)$ is a Schauder frame.

By previous result, observe that, if $x'_1(x_1) \neq 1$ the map $x \to \sum_{j=2}^{\infty} x'_j(x)x_j$ is invertible as 1 is not an eigenvalue of the rank one operator $x \to x'_1(x)x_1$.

Hence there exists $\{y'_j\}_j \subset E'$ such that $(\{y'_j\}_j, \{x_{j+1}\}_j)$ is a Schauder frame.

In that case, we can remove an element and still obtain Schauder frames.

Given a Schauder frame $(\{x'_j\}, \{x_j\})$ of E it is rather natural to ask whether $(\{x_j\}, \{x'_j\})$ is a Schauder frame of E'.

Given a Schauder frame $(\{x'_j\}, \{x_j\})$ of E it is rather natural to ask whether $(\{x_j\}, \{x'_j\})$ is a Schauder frame of E'.

Lemma

If $(\{x'_j\}, \{x_j\})$ is a Schauder frame of E, then $(\{x_j\}, \{x'_j\})$ is a Schauder frame of $(E', \sigma(E', E))$.

Given a Schauder frame $(\{x'_j\}, \{x_j\})$ of E it is rather natural to ask whether $(\{x_j\}, \{x'_j\})$ is a Schauder frame of E'.

Lemma

If $(\{x'_j\}, \{x_j\})$ is a Schauder frame of E, then $(\{x_j\}, \{x'_j\})$ is a Schauder frame of $(E', \sigma(E', E))$.

The question we are going to face is under which conditions $(\{x_j\}, \{x'_j\})$ is a Schauder frame of $(E', \beta(E', E))$.

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{i=n+1}^{\infty} x'_i(x) x_i$.

Definition

An Schauder frame $(\{x'_j\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of *E*.

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{i=n+1}^{\infty} x'_i(x) x_i$.

Definition

An Schauder frame $(\{x'_i\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of E.

Theorem

The following are equivalent:

•
$$(\{x'_i\}, \{x_j\})$$
 is a shrinking Schauder frame of *E*.

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{j=n+1}^{\infty} x'_j(x) x_j$.

Definition

An Schauder frame $(\{x'_j\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of *E*.

Theorem

The following are equivalent:

•
$$(\{x'_i\}, \{x_j\})$$
 is a shrinking Schauder frame of *E*.

$$(\{x_j\}, \{x'_i\}) \text{ is a Schauder frame for } E'_{\beta}.$$

We define a linear operator $T_n: E \to E$ as $T_n(x) := \sum_{j=n+1}^{\infty} x'_j(x) x_j$.

Definition

An Schauder frame $(\{x'_j\}, \{x_j\})$ is *shrinking* if for all $x' \in E'$, $\lim_{n\to\infty} x' \circ T_n = 0$ uniformly on the bounded subsets of *E*.

Theorem

The following are equivalent:

•
$$(\{x'_i\}, \{x_j\})$$
 is a shrinking Schauder frame of *E*.

$$(\{x_j\}, \{x'_j\})$$
 is a Schauder frame for E'_{β} .

3 For all
$$x' \in E'$$
, $\sum_{j=1}^{\infty} x'(x_j) x'_j$ is convergent in E'_{β} .

Definition

A space E is called Montel if it is barrelled and every bounded subset of E is relatively compact.

Propostion

Every Schauder frame of a Montel space E is shrinking.

Definition

A space E is called Montel if it is barrelled and every bounded subset of E is relatively compact.

Propostion

Every Schauder frame of a Montel space E is shrinking.

Since the pointwise convergence of an equicontinuous sequence of operators implies the uniform convergence on the compact sets.

Beanland, Freeman, Liu, 2012

Every infinite dimensional Banach space which admits a Schauder frame has also a Schauder frame which is not shrinking.

The idea of the proof is the existence of weak^{*} null sequences in the unit sphere of E'.

Beanland, Freeman, Liu, 2012

Every infinite dimensional Banach space which admits a Schauder frame has also a Schauder frame which is not shrinking.

The idea of the proof is the existence of weak^{*} null sequences in the unit sphere of E'.

Theorem

Let E be a separable Fréchet space with the bounded approximation property. Then E is Montel if and only if every Schauder frame of E is shrinking.

Using Bonet, Lindstrom, Valdivia (1993) a Fréchet space E is Montel if and only if every weak^{*} null sequence in E' is also strongly convergent.

Boundedly Complete Schauder frames

Definition

A Schauder frame $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_\beta$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Juan Miguel Ribera Puchades (UPV)

Boundedly Complete Schauder frames

Definition

A Schauder frame $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_{\beta}$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Proposition

Let {e_j}[∞]_{j=1} be a Schauder basis of E; ({e'_j}, {e_j}) is a boundedly complete Schauder frame if and only if {e_j}[∞]_{j=1} is a boundedly complete Schauder basis (i.e. for every {α_j}[∞]_{j=1} ⊂ K such that (∑^k_{j=1} α_je_j)_k is bounded, then ∑[∞]_{j=1} α_je_j is convergent).

Boundedly Complete Schauder frames

Definition

A Schauder frame $(\{x'_j\}, \{x_j\})$ is *boundedly complete* if for all $x'' \in E''_{\beta}$, the series $\sum_{j=1}^{\infty} x'_j(x'') x_j$ converges in *E*.

Proposition

2 Let {e_j}_{j=1}[∞] be a Schauder basis of E; ({e'_j}, {e_j}) is a boundedly complete Schauder frame if and only if {e_j}_{j=1}[∞] is a boundedly complete Schauder basis (i.e. for every {α_j}_{j=1}[∞] ⊂ K such that (∑^k_{j=1} α_je_j)_k is bounded, then ∑[∞]_{j=1} α_je_j is convergent).
2 If ({x'_j}, {x_j}) is a boundedly complete Schauder frame for E with E''_β barrelled, then E is complemented in its bidual E''_β.

Properties

Proposition

Let *E* be a lcs and let $(\{x'_j\}, \{x_j\})$ be a shrinking Schauder frame of *E*. Then $(\{x_j\}, \{x'_i\})$ is a boundedly complete Schauder frame of E'_{β} .

Properties

Proposition

Let *E* be a lcs and let $(\{x'_j\}, \{x_j\})$ be a shrinking Schauder frame of *E*. Then $(\{x_j\}, \{x'_i\})$ is a boundedly complete Schauder frame of E'_{β} .

Theorem

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame of a (barrelled) lcs *E* which is shrinking and boundedly complete, then *E* is (semi-)reflexive.

Properties

Proposition

Let *E* be a lcs and let $(\{x'_j\}, \{x_j\})$ be a shrinking Schauder frame of *E*. Then $(\{x_j\}, \{x'_i\})$ is a boundedly complete Schauder frame of E'_{β} .

Theorem

Let $(\{x'_j\}, \{x_j\})$ be a Schauder frame of a (barrelled) lcs *E* which is shrinking and boundedly complete, then *E* is (semi-)reflexive.

Fix $x'' \in E''$.

$$\langle x'',x'\rangle = \langle x'',\sum_{j=1}^{\infty} x'(x_j)x_j'\rangle = \sum_{j=1}^{\infty} x'(x_j)x''(x_j') = (\sum_{j=1}^{\infty} x''(x_j')x_j)(x') = \langle x,x'\rangle.$$

Definition

Definition

An Schauder frame $(\{x'_j\}, \{x_j\})$ for a lcs *E* is said to be *unconditional* if for every $x \in E$ we have $x = \sum_{j=1}^{\infty} x'_j(x) x_j$ with unconditional convergence.

Juan Miguel Ribera Puchades (UPV)

Definition

Definition

An Schauder frame $(\{x'_j\}, \{x_j\})$ for a lcs *E* is said to be *unconditional* if for every $x \in E$ we have $x = \sum_{j=1}^{\infty} x'_j(x) x_j$ with unconditional convergence.

McArthur, Retherford, 1969

If a series $\sum_{j=1}^{\infty} x_j$ converges unconditionally, then, for every bounded sequence of scalars $\{a_j\}$, the series $\sum_{j=1}^{\infty} a_j x_j$ converges and the operator

$$\begin{array}{rccc} \ell_{\infty} & \longrightarrow & E \\ \{a_j\} & \longrightarrow & \sum_{j=1}^{\infty} a_j x_j; \end{array}$$

is a continuous linear operator.
Space structure

Let $\{x_j\}_{j=1}^{\infty} \subset E$ be a sequence of non-zero elements.

$$\widetilde{\bigwedge} := \{ \alpha = \{ \alpha_j \}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E \} \subset \omega,$$

$$\widetilde{\mathcal{Q}} := \{ q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in \mathcal{P} \}.$$

Space structure

Let $\{x_j\}_{j=1}^{\infty} \subset E$ be a sequence of non-zero elements.

$$\begin{split} \widetilde{\bigwedge} &:= \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E\} \subset \omega, \\ \widetilde{\mathcal{Q}} &:= \{q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in \mathcal{P}\}. \end{split}$$

Proposition

If E is a complete lcs then $(\widetilde{\Lambda}, \widetilde{\mathcal{Q}})$ is a complete lcs.

Space structure

Let $\{x_j\}_{j=1}^{\infty} \subset E$ be a sequence of non-zero elements.

$$\widetilde{\bigwedge} := \{ \alpha = \{ \alpha_j \}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j \text{ is convergent in } E \} \subset \omega,$$

$$\widetilde{\mathcal{Q}} := \{ q_p(\{\alpha_j\}_j) := \sup_n p(\sum_{j=1}^n \alpha_j x_j), \text{ for all } p \in \mathcal{P} \}.$$

Proposition

If *E* is a complete lcs then $(\widetilde{\Lambda}, \widetilde{Q})$ is a complete lcs.

Theorem

If $(\{x'_j\}, \{x_j\})$ is a unconditional Schauder frame of E, then is isomorphic to a complemented subspace of $(\widetilde{\Lambda}, \widetilde{Q})$.

Theorem

The following are equivalent:

@ E admits an unconditional Schauder frame.

Theorem

The following are equivalent:

- Ø E admits an unconditional Schauder frame.
- *E* is isomorphic to a complemented subspace of a complete sequence space with unconditional Schauder basis.

Boundedly retractive (LF)-spaces

Definition

An (LF)-space $E = \operatorname{ind}_{n \to} E_n$ is called *boundedly retractive* if for every bounded set B in E there exists m = m(B) such that B is contained and bounded in E_m and E_m and E induce the same topology on B.

Boundedly retractive (LF)-spaces

Definition

An (LF)-space $E = \operatorname{ind}_{n \to} E_n$ is called *boundedly retractive* if for every bounded set B in E there exists m = m(B) such that B is contained and bounded in E_m and E_m and E induce the same topology on B.

By Fernández (1990) an (LF)-space E is boundedly retractive if and only if each bounded subset in E is in fact bounded in some step E_n and for each n there is m > n such that E_m and E induce the same topology on the bounded sets of E_n .

Wengenroth (1996) also proved an equivalence between boundedly retractive (*LF*)-spaces and Retakh's condition (M) for arbitrary (*LF*)-spaces.

Boundedly retractive (LF)-spaces

Definition

An (LF)-space $E = \operatorname{ind}_{n \to} E_n$ is called *boundedly retractive* if for every bounded set B in E there exists m = m(B) such that B is contained and bounded in E_m and E_m and E induce the same topology on B.

By Fernández (1990) an (LF)-space E is boundedly retractive if and only if each bounded subset in E is in fact bounded in some step E_n and for each n there is m > n such that E_m and E induce the same topology on the bounded sets of E_n .

Wengenroth (1996) also proved an equivalence between boundedly retractive (LF)-spaces and Retakh's condition (M) for arbitrary (LF)-spaces.

Each Fréchet space F can be seen as a boundedly retractive (*LF*)-space, just take $F_n = F$ for all $n \in \mathbb{N}$. In particular the following result holds for Fréchet spaces.

Rosenthal's ℓ_1 theorem for (LF)-spaces

Rosenthal's ℓ_1 theorem was extended to Fréchet spaces by *Díaz (1989)*, showing that every bounded sequence in a Fréchet space has a subsequence that is either weakly Cauchy or equivalent to the unit vectors in ℓ_1 .

Rosenthal's ℓ_1 theorem for (LF)-spaces

Let $E = \operatorname{ind}_{n \to} E_n$ be a boundedly retractive (LF)-space. Every bounded sequence in E has a subsequence which is $\sigma(E, E')$ -Cauchy or equivalent to the unit vector basis of ℓ_1 . In particular, E does not contain a copy of ℓ_1 if and only if every bounded sequence in E has a $\sigma(E, E')$ -Cauchy subsequence.

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

• Let $\{x_j\}_j$ be a bounded sequence in E and assume that it has no $\sigma(E, E')$ -Cauchy subsequence. There is $n_0 \in \mathbb{N}$ such that $\{x_j\}_j$ is a bounded sequence in E_{n_0} .

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

- Let $\{x_j\}_j$ be a bounded sequence in E and assume that it has no $\sigma(E, E')$ -Cauchy subsequence. There is $n_0 \in \mathbb{N}$ such that $\{x_j\}_j$ is a bounded sequence in E_{n_0} .
- Now select $m \ge n_0$ such that E_m and E induce the same topology on the bounded sets of E_{n_0} .

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

- Let $\{x_j\}_j$ be a bounded sequence in E and assume that it has no $\sigma(E, E')$ -Cauchy subsequence. There is $n_0 \in \mathbb{N}$ such that $\{x_j\}_j$ is a bounded sequence in E_{n_0} .
- Now select $m \ge n_0$ such that E_m and E induce the same topology on the bounded sets of E_{n_0} .
- Since $\{x_j\}_j$ is bounded in E_m and it has no $\sigma(E_m, E'_m)$ -Cauchy subsequence, we can apply Rosenthal's ℓ_1 theorem in the Fréchet space E_m to conclude that there is a subsequence $\{x_{j_k}\}_k$ which is equivalent to the unit vector basis of ℓ_1 . That is, there exist c_1 and a continuous seminorm p in E_m such that

$$c_1\sum_{k=1}^{\infty} |\alpha_k| \leq p\left(\sum_{k=1}^{\infty} \alpha_k x_{j_k}\right) \leq \sup_k p(x_{j_k})\sum_{k=1}^{\infty} |\alpha_k|,$$

for every $\alpha = (\alpha_k)_k \in \ell_1$.

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

• Set $F := \{\sum_{k=1}^{\infty} \alpha_k x_{j_k} : \alpha = \{\alpha_k\}_k \in \ell_1\} \subset E_{n_0} \text{ and } F \text{ endowed with}$ any of them is a Banach space isomorphic to ℓ_1 . The spaces E_{n_0} and E_m induce on F the same (Banach) topology.

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

- Set $F := \{\sum_{k=1}^{\infty} \alpha_k x_{j_k} : \alpha = \{\alpha_k\}_k \in \ell_1\} \subset E_{n_0} \text{ and } F \text{ endowed with}$ any of them is a Banach space isomorphic to ℓ_1 . The spaces E_{n_0} and E_m induce on F the same (Banach) topology.
- Denote by U_F the closed unit ball of F and by τ_m and τ the topologies of E_m and E, respectively. Then τ and τ_m coincide on U_F , which is an absolutely convex 0-neighbourhood for $\tau_m|_F$.

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

- Set $F := \{\sum_{k=1}^{\infty} \alpha_k x_{j_k} : \alpha = \{\alpha_k\}_k \in \ell_1\} \subset E_{n_0} \text{ and } F \text{ endowed with}$ any of them is a Banach space isomorphic to ℓ_1 . The spaces E_{n_0} and E_m induce on F the same (Banach) topology.
- Denote by U_F the closed unit ball of F and by τ_m and τ the topologies of E_m and E, respectively. Then τ and τ_m coincide on U_F , which is an absolutely convex 0-neighbourhood for $\tau_m|_F$.
- Applying a result of Roelcke we conclude that τ_m and τ coincide in F; hence, there is a continuous seminorm r on E such that p(z) ≤ r(z) for every z ∈ F. This implies, for each α = (α_k)_k ∈ ℓ₁,

$$c_{1}\sum_{k=1}^{\infty}|\alpha_{k}| \leq p\left(\sum_{k=1}^{\infty}\alpha_{k}x_{j_{k}}\right) \leq r\left(\sum_{k=1}^{\infty}\alpha_{k}x_{j_{k}}\right) \leq \left(\sup_{k}r\left(x_{j_{k}}\right)\right)\sum_{k=1}^{\infty}|\alpha_{k}|.$$

Rosenthal's ℓ_1 theorem for (LF)-spaces (Proof)

- Set $F := \{\sum_{k=1}^{\infty} \alpha_k x_{j_k} : \alpha = \{\alpha_k\}_k \in \ell_1\} \subset E_{n_0} \text{ and } F \text{ endowed with}$ any of them is a Banach space isomorphic to ℓ_1 . The spaces E_{n_0} and E_m induce on F the same (Banach) topology.
- Denote by U_F the closed unit ball of F and by τ_m and τ the topologies of E_m and E, respectively. Then τ and τ_m coincide on U_F , which is an absolutely convex 0-neighbourhood for $\tau_m|_F$.
- Applying a result of Roelcke we conclude that τ_m and τ coincide in F; hence, there is a continuous seminorm r on E such that p(z) ≤ r(z) for every z ∈ F. This implies, for each α = (α_k)_k ∈ ℓ₁,

$$c_{1}\sum_{k=1}^{\infty}|\alpha_{k}| \leq p\left(\sum_{k=1}^{\infty}\alpha_{k}x_{j_{k}}\right) \leq r\left(\sum_{k=1}^{\infty}\alpha_{k}x_{j_{k}}\right) \leq \left(\sup_{k}r\left(x_{j_{k}}\right)\right)\sum_{k=1}^{\infty}|\alpha_{k}|.$$

Thus, {x_{j_k}}_k is equivalent to the unit vectors of ℓ₁ in E and the inclusion F → E is a topological isomorphism into. Then, E contains an isomorphic copy of ℓ₁.

Juan Miguel Ribera Puchades (UPV)

Frames in Fréchet space

31 / 47

Theorem

Theorem

Let *E* be a boundedly retractive (*LF*)-space. Assume that *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

• If $(\{x'_i\}, \{x_j\})$ is shrinking, E'_{β} is separable.

Theorem

Let *E* be a boundedly retractive (*LF*)-space. Assume that *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$. Then, $(\{x'_j\}, \{x_j\})$ is shrinking if and only if *E* does not contain a copy of ℓ_1 .

• If $(\{x'_j\}, \{x_j\})$ is shrinking, E'_{β} is separable. Therefore E contains no subspace isomorphic to ℓ_1 .

Theorem

- If $(\{x'_j\}, \{x_j\})$ is shrinking, E'_{β} is separable. Therefore E contains no subspace isomorphic to ℓ_1 .
- We know that ({x_j}, {x'_j}) is a Schauder frame of (E', σ (E', E)) and we prove that it is unconditional.

Theorem

- If $(\{x'_j\}, \{x_j\})$ is shrinking, E'_{β} is separable. Therefore E contains no subspace isomorphic to ℓ_1 .
- We know that $(\{x_j\}, \{x'_j\})$ is a Schauder frame of $(E', \sigma(E', E))$ and we prove that it is unconditional. By Orlicz-Pettis' Theorem it is $\mu(E', E)$ -unconditionally convergent to x'.

Theorem

- If ({x_j'}, {x_j}) is shrinking, E_β' is separable. Therefore E contains no subspace isomorphic to ℓ₁.
- We know that $(\{x_j\}, \{x'_j\})$ is a Schauder frame of $(E', \sigma(E', E))$ and we prove that it is unconditional. By Orlicz-Pettis' Theorem it is $\mu(E', E)$ -unconditionally convergent to x'. By a result of *Bonet*, *Lindström (1993)*, if *E* does not contain a copy of ℓ_1 then every $\mu(E', E)$ -null sequence in E' is strongly convergent to zero.

Theorem

If *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

Theorem

If *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

• If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$.

Theorem

If *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

• If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$. Then, c_0 is complemented in its bidual l_{∞} , a contradiction.

Theorem

If *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

- If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$. Then, c_0 is complemented in its bidual l_{∞} , a contradiction.
- Suppose that $(\{x'_i\}, \{x_j\})$ is not boundedly complete,

Theorem

If *E* admits an unconditional Schauder frame $(\{x'_j\}, \{x_j\})$, then, $(\{x'_j\}, \{x_j\})$ is boundedly complete if and only if *E* does not contain a copy of c_0 .

- If we suppose that E contains a copy of c_0 , there exists a projection P such that $P(E) \simeq c_0$. Then, c_0 is complemented in its bidual l_{∞} , a contradiction.
- Suppose that $(\{x'_j\}, \{x_j\})$ is not boundedly complete, then there exists U, a 0-neighborhood, and a sequence $\{y_j\}$ such that $p_U(y_j) \ge 1$ and $(y_j)_j$ converges to 0 in the topology $\sigma(E, E')$, a contradiction.

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\overset{\circ}{K} \neq \emptyset$ such that $K = \overline{\overset{\circ}{K}}$.

Juan Miguel Ribera Puchades (UPV)

Frames in Fréchet spaces

Esneux, 12 Jun 2014

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\overset{\circ}{K} \neq \emptyset$ such that $K = \overset{\circ}{K}$. Let $C^{\infty}(K) := \{f \in C^{\infty}(\overset{\circ}{K}) : f \text{ and all its partial derivatives admit continuous extension to <math>K\}$.

Let K be a compact set in \mathbb{R}^p , $p \ge 1$, with $\overset{\circ}{K} \ne \emptyset$ such that $K = \overset{\circ}{K}$. Let $C^{\infty}(K) := \{f \in C^{\infty}(\overset{\circ}{K}) : f \text{ and all its partial derivatives admit continuous extension to <math>K\}$. The Fréchet space topology in $C^{\infty}(K)$ is defined by the seminorms:

$$q_n(f) := \sup \left\{ \left| f^{(\alpha)}(x) \right| : x \in K, \ |\alpha| \le n \right\}, n \in \mathbb{N}_0.$$

Let *K* be a compact set in \mathbb{R}^p , $p \ge 1$, with $\mathring{K} \neq \emptyset$ such that $K = \mathring{K}$. Let $C^{\infty}(K) := \{f \in C^{\infty}(\mathring{K}) : f \text{ and all its partial derivatives admit continuous extension to <math>K\}$.

The Fréchet space topology in $C^{\infty}(K)$ is defined by the seminorms:

$$q_{n}(f) := \sup \left\{ \left| f^{(\alpha)}(x) \right| : x \in K, \ |\alpha| \leq n \right\}, n \in \mathbb{N}_{0}.$$

Remark

No system of exponentials can be a basis in $C^{\infty}([0,1])$.

Theorem

There exists a continuous linear extension operator $T: C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$ if and only if there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_i) \in C^{\infty}(K)'$ such that $(\{u_i\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is a Schauder frame for $C^{\infty}(K).$

Theorem

There exists a continuous linear extension operator $T: C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$ if and only if there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_j) \in C^{\infty}(K)'$ such that $(\{u_j\}, \{e^{2\pi i \times \cdot \lambda^j}\})$ is a Schauder frame for $C^{\infty}(K)$.

If we suppose that there exists a continuous linear extension operator.

• Let M > 0 such that $K \subset [-M, M]^p$.

Theorem

There exists a continuous linear extension operator $T: C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$ if and only if there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_i) \in C^{\infty}(K)'$ such that $(\{u_i\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is a Schauder frame for $C^{\infty}(K)$.

If we suppose that there exists a continuous linear extension operator.

- Let M > 0 such that $K \subset [-M, M]^p$.
- Choosing $\phi \in \mathcal{D}([-2M, 2M]^p)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^{p}$.

Theorem

There exists a continuous linear extension operator $T: C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$ if and only if there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_i) \in C^{\infty}(K)'$ such that $(\{u_i\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is a Schauder frame for $C^{\infty}(K)$.

If we suppose that there exists a continuous linear extension operator.

- Let M > 0 such that $K \subset [-M, M]^p$.
- Choosing $\phi \in \mathcal{D}\left([-2M, 2M]^{p}\right)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^{p}$.
- Let $f \in C^{\infty}(K)$ we define $Hf = \phi(T(f)) \in \mathcal{D}([-2M, 2M]^p)$.

Theorem

There exists a continuous linear extension operator $T: C^{\infty}(K) \to C^{\infty}(\mathbb{R}^p)$ if and only if there are sequences $(\lambda^j) \subset \mathbb{R}^p$ and $(u_i) \in C^{\infty}(K)'$ such that $(\{u_i\}, \{e^{2\pi i x \cdot \lambda^j}\})$ is a Schauder frame for $C^{\infty}(K)$.

If we suppose that there exists a continuous linear extension operator.

- Let M > 0 such that $K \subset [-M, M]^p$.
- Choosing $\phi \in \mathcal{D}\left([-2M, 2M]^{p}\right)$ such that $\phi \equiv 1$ on a neighborhood of $[-M, M]^{p}$.
- Let $f \in C^{\infty}(K)$ we define $Hf = \phi(T(f)) \in \mathcal{D}([-2M, 2M]^p)$.
- We extend Hf as a periodic C^{∞} function in \mathbb{R}^{p} and then we take $u_i(f) = a_i(Hf).$
To show the converse

• For every $f \in C^{\infty}(K)$ we have $f(x) = \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ in $C^{\infty}(K)$ and $\sum_{j=1}^{\infty} u_j(f) b_j e^{2\pi i x \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\{b_j\} \in \ell_{\infty}$.

- For every $f \in C^{\infty}(K)$ we have $f(x) = \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ in $C^{\infty}(K)$ and $\sum_{j=1}^{\infty} u_j(f) b_j e^{2\pi i x \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\{b_j\} \in \ell_{\infty}$.
- After differentiation, we obtain that $\sum_{j=1}^{\infty} u_j(f) 2\pi b_j \lambda_j^{\alpha} e^{2\pi i \cdot \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\alpha \in \mathbb{N}_0^p$ and $\{b_j\} \in \ell_{\infty}$.

- For every $f \in C^{\infty}(K)$ we have $f(x) = \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ in $C^{\infty}(K)$ and $\sum_{j=1}^{\infty} u_j(f) b_j e^{2\pi i x \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\{b_j\} \in \ell_{\infty}$.
- After differentiation, we obtain that $\sum_{j=1}^{\infty} u_j(f) 2\pi b_j \lambda_j^{\alpha} e^{2\pi i \times \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\alpha \in \mathbb{N}_0^p$ and $\{b_j\} \in \ell_{\infty}$.
- In particular, this series converges for a fixed x_0 in the interior of K, from where it follows $\sum_{j=1}^{\infty} \left| u_j(f) 2\pi \lambda_j^{\alpha} \right| < +\infty$ for every $\alpha \in \mathbb{N}_0^p$.

- For every $f \in C^{\infty}(K)$ we have $f(x) = \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ in $C^{\infty}(K)$ and $\sum_{j=1}^{\infty} u_j(f) b_j e^{2\pi i x \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\{b_j\} \in \ell_{\infty}$.
- After differentiation, we obtain that $\sum_{j=1}^{\infty} u_j(f) 2\pi b_j \lambda_j^{\alpha} e^{2\pi i \cdot \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\alpha \in \mathbb{N}_0^p$ and $\{b_j\} \in \ell_{\infty}$.
- In particular, this series converges for a fixed x_0 in the interior of K, from where it follows $\sum_{j=1}^{\infty} |u_j(f)2\pi\lambda_j^{\alpha}| < +\infty$ for every $\alpha \in \mathbb{N}_0^p$.
- Consequently $T(f)(x) := \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ defines a C^{∞} function in \mathbb{R}^p .

- For every $f \in C^{\infty}(K)$ we have $f(x) = \sum_{j=1}^{\infty} u_j(f)e^{2\pi i x \cdot \lambda_j}$ in $C^{\infty}(K)$ and $\sum_{j=1}^{\infty} u_j(f)b_j e^{2\pi i x \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\{b_j\} \in \ell_{\infty}$.
- After differentiation, we obtain that $\sum_{j=1}^{\infty} u_j(f) 2\pi b_j \lambda_j^{\alpha} e^{2\pi i \times \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\alpha \in \mathbb{N}_0^p$ and $\{b_j\} \in \ell_{\infty}$.
- In particular, this series converges for a fixed x_0 in the interior of K, from where it follows $\sum_{j=1}^{\infty} |u_j(f)2\pi\lambda_j^{\alpha}| < +\infty$ for every $\alpha \in \mathbb{N}_0^p$.
- Consequently $T(f)(x) := \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ defines a C^{∞} function in \mathbb{R}^p .
- The continuity of T follows from the Banach-Steinhaus theorem.

To show the converse

- For every $f \in C^{\infty}(K)$ we have $f(x) = \sum_{j=1}^{\infty} u_j(f)e^{2\pi i x \cdot \lambda_j}$ in $C^{\infty}(K)$ and $\sum_{j=1}^{\infty} u_j(f)b_je^{2\pi i x \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\{b_j\} \in \ell_{\infty}$.
- After differentiation, we obtain that $\sum_{j=1}^{\infty} u_j(f) 2\pi b_j \lambda_j^{\alpha} e^{2\pi i \cdot \cdot \lambda_j}$ converges in $C^{\infty}(K)$ for every $\alpha \in \mathbb{N}_0^p$ and $\{b_j\} \in \ell_{\infty}$.
- In particular, this series converges for a fixed x_0 in the interior of K, from where it follows $\sum_{j=1}^{\infty} |u_j(f)2\pi\lambda_j^{\alpha}| < +\infty$ for every $\alpha \in \mathbb{N}_0^p$.
- Consequently $T(f)(x) := \sum_{j=1}^{\infty} u_j(f) e^{2\pi i x \cdot \lambda_j}$ defines a C^{∞} function in \mathbb{R}^p .
- The continuity of T follows from the Banach-Steinhaus theorem.

The Schauder frame of $C^{\infty}(K)$ is shrinking and boundedly complete since $C^{\infty}(K)$ is a Montel space.

If we assume that there exists a continuous linear extension operator, then, for a fixed $j_0 \in \mathbb{Z}^p$ we can choose ϕ such that the j_0 -th Fourier coefficient of $\phi T(e^{2\pi i \lambda^{j_0}})$ is not equal to 1.

If we assume that there exists a continuous linear extension operator, then, for a fixed $j_0 \in \mathbb{Z}^p$ we can choose ϕ such that the j_0 -th Fourier coefficient of $\phi T(e^{2\pi i \lambda^{j_0}})$ is not equal to 1.

According to the comment in Pertubation results, we may remove one of the exponentials in the Schauder frame above and still obtain a Schauder frame.

If we assume that there exists a continuous linear extension operator, then, for a fixed $j_0 \in \mathbb{Z}^p$ we can choose ϕ such that the j_0 -th Fourier coefficient of $\phi T(e^{2\pi i \lambda^{j_0}})$ is not equal to 1.

According to the comment in Pertubation results, we may remove one of the exponentials in the Schauder frame above and still obtain a Schauder frame.

Choosing $\psi \neq \phi$ in the proof above, we find a different sequence $(v_j) \in C^{\infty}(K)'$ such that $(\{v_j\}, \{e^{2\pi i x \cdot \lambda_j}\})$ is an unconditional Schauder frame for $C^{\infty}(K)$.

Index

1 Motivation

2 Schauder Frames

- Perturbation
- Duality
- Unconditional Schauder frames
- Example

Definition

Let *E* be a lcs and Λ be a sequence space.

Definition

Let Λ be a sequence lcs, a sequence $\{g_i\}_i \subset E'$ is called a Λ -Bessel sequence in E' if $U_{\{g_i\}_i} : E \to \Lambda$ defined by $U_{\{g_i\}_i}(x) := \{g_i(x)\}_i$ is a continuous linear operator.

Definition

Let *E* be a lcs and Λ be a sequence space.

Definition

Let Λ be a sequence lcs, a sequence $\{g_i\}_i \subset E'$ is called a Λ -Bessel sequence in E' if $U_{\{g_i\}_i} : E \to \Lambda$ defined by $U_{\{g_i\}_i}(x) := \{g_i(x)\}_i$ is a continuous linear operator.

Definition

- {g_i}_i ⊂ E' is called a Λ−frame if the analysis operator is an isomorphism into the sequence space Λ.
- ② $\{g_i\}_i \subset E'$ is called a *frame with respect to* Λ if the range of the analysis operator, $R(U_{\{g_i\}_i})$, is complemented in Λ . This is, $U_{\{g_i\}_i}$ is a continuous operator and there exists $S : \Lambda \to E$ such that $S \circ U = id|_E$.

Relation between frames and Schauder frames

Let $(\{x'_n\}, \{x_n\})$ be a Schauder frame for a lcs E. Also, letting $\Lambda := \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{j=1}^{\infty} \alpha_j x_j$ is convergent in $E\}$, then we obtain that $\{x'_i\}_i \subset E'$ is a Λ -frame and, indeed, is a frame with respect to Λ .

Relation between frames and Schauder frames

Let $(\{x'_n\}, \{x_n\})$ be a Schauder frame for a lcs E. Also, letting $\Lambda := \{\alpha = \{\alpha_j\}_j \in \omega : \sum_{i=1}^{\infty} \alpha_j x_j \text{ is convergent in } E\}, \text{ then we obtain}$ that $\{x_i^{\prime}\}_i \subset E^{\prime}$ is a Λ -frame and, indeed, is a frame with respect to Λ .

Moreover, if A has a Schauder basis $\{e_i\}_i$ and $\{g_i\}_i \subset E'$ is a frame with respect to Λ , then, there exists a Schauder frame for E.

Relation between frames and Schauder frames

Definition

We define β -dual space of a sequence space Λ as $\Lambda^{\beta} := \{\{y_i\}_i \in \omega : \sum_{i=1}^{\infty} x_i y_i \text{ converges for every } \{x_i\}_i \in \Lambda\}.$

Juan Miguel Ribera Puchades (UPV)

Relation between frames and Schauder frames

Definition

We define β -dual space of a sequence space Λ as $\Lambda^{\beta} := \{\{y_i\}_i \in \omega : \sum_{i=1}^{\infty} x_i y_i \text{ converges for every } \{x_i\}_i \in \Lambda\}.$

Moreover, if $(\{x'_n\}, \{x_n\})$ is a Schauder frame for a barrelled lcs E and Λ is the associated sequence space given before then the operators $U : E \to \Lambda$ and $S : \Lambda \to E$ given by $U(x) := \{x'_n(x)\}_n$ and $S(\{\alpha_i\}_i) := \sum_{i=1}^{\infty} \alpha_i x_i$ respectively, are continuous operators such that $S \circ U = id_E$.

Relation between frames and Schauder frames

Definition

We define β -dual space of a sequence space Λ as $\Lambda^{\beta} := \{\{y_i\}_i \in \omega : \sum_{i=1}^{\infty} x_i y_i \text{ converges for every } \{x_i\}_i \in \Lambda\}.$

Moreover, if $(\{x'_n\}, \{x_n\})$ is a Schauder frame for a barrelled lcs E and Λ is the associated sequence space given before then the operators $U : E \to \Lambda$ and $S : \Lambda \to E$ given by $U(x) := \{x'_n(x)\}_n$ and $S(\{\alpha_i\}_i) := \sum_{i=1}^{\infty} \alpha_i x_i$ respectively, are continuous operators such that $S \circ U = id_E$.

If the canonical unit vectors $\{e_i\}_i$ form a Schauder basis and Λ is a barrelled sequence space then Λ'_{β} can be identified algebraically with the β -dual.

Relation between frames and Schauder frames

Also, $U' : \Lambda' \to E'$ and $S' : E' \to \Lambda'$ with $S'(x') := \{x'(x_i)\}_i$ are such that $U' \circ S' = id_{E'}$ and $S'(\Lambda')$ is complemented in Λ' . Indeed, given a bounded set $B \subset E$, C := U(B) is bounded in Λ and $S'(E') \cap C^\circ \subset S'(B^\circ)$. Therefore, S' is an isomorphism into and, in many cases, the dual space has a frame with respect to Λ' .

Relation between frames and Schauder frames

Also, $U' : \Lambda' \to E'$ and $S' : E' \to \Lambda'$ with $S'(x') := \{x'(x_i)\}_i$ are such that $U' \circ S' = id_{E'}$ and $S'(\Lambda')$ is complemented in Λ' . Indeed, given a bounded set $B \subset E$, C := U(B) is bounded in Λ and $S'(E') \cap C^\circ \subset S'(B^\circ)$. Therefore, S' is an isomorphism into and, in many cases, the dual space has a frame with respect to Λ' .

Note also that, if E'_{β} is not separable, then cannot have a Schauder frame.

Theorem

Let *E* be a barrelled lcs and let Λ be a barrelled sequence lcs for which the canonical unit vectors $\{e_i\}_i$ form a Schauder basis. Then $\{g_i\}_i \subset E'$ is Λ' -Bessel for *E* if and only if the operator $T : \Lambda \to E'_{\beta}$ given by $T(\{d_i\}_i) := \sum_{i=1}^{\infty} d_i g_i$ is well defined and continuous.

Corollary

Let *E* be a barrelled lcs and let Λ be a barrelled locally convex sequence space, whose strong dual Λ'_{β} is barrelled and the canonical unit vectors $\{e_i\}_i$ form a Schauder basis. If $\{g_i\}_i \subset E'$ is Λ -Bessel for *E* then the operator $T : \Lambda' \to E'$ given by $T(\{d_i\}_i) := \sum_{i=1}^{\infty} d_i g_i$ is well defined and continuous. If Λ is reflexive, the converse holds.

Theorem

Let E be a barrelled and complete lcs and let Λ be a barrelled sequence space for which the canonical unit vectors {e_i}_i form a Schauder basis. If {g_i}_i ⊂ E' is Λ-Bessel for E then the following conditions are equivalent:
(i) {g_i}_i ⊂ E' is a frame with respect to Λ.
(ii) There exists a family {f_i}_i ⊂ E, such that ∑_{i=1}[∞] c_if_i is convergent for every {c_i}_i ∈ Λ and x = ∑_{i=1}[∞] g_i(x) f_i, for every x ∈ E.

Example

Let $Exp(\mathbb{C})$ the vector space of entire functions of exponential type,

$$Exp(\mathbb{C}) := \{ f \in \mathcal{H}(\mathbb{C}) : \sup_{z \in \mathbb{C}} |f(z)|e^{-k|z|} < \infty \text{ for some } k > 0 \}.$$

Let \mathcal{K} denote the space of all positive continuous functions h(z) on the complex plane \mathbb{C} such that $\exp(A|z|) = O(h(z))$ as $|z| \to \infty$ for every A > 0. Then, we are going to use the following sequence space Λ defined by the inductive limit $\kappa_{\infty}(V) = ind_r \ell_{\infty}(v_r)$ where $(v_r(n, m))_{r \in \mathbb{N}}$ is a decreasing sequence of weights such that, if s > r, $\frac{v_s}{v_c} \in c_0(\mathbb{Z}^2)$:

$$\Lambda := \{ \alpha := (\alpha_{n,m})_{n,m \in \mathbb{Z}} : \sup \frac{|\alpha_{n,m}|}{h(n+im)} < \infty \text{ for every } h \in \mathcal{K} \}.$$

Example

Let $Exp(\mathbb{C})$ the vector space of entire functions of exponential type,

$$Exp(\mathbb{C}) := \{f \in \mathcal{H}(\mathbb{C}) : \sup_{z \in \mathbb{C}} |f(z)|e^{-k|z|} < \infty \text{ for some } k > 0\}.$$

Let \mathcal{K} denote the space of all positive continuous functions h(z) on the complex plane \mathbb{C} such that $\exp(A|z|) = O(h(z))$ as $|z| \to \infty$ for every A > 0. Then, we are going to use the following sequence space Λ defined by the inductive limit $\kappa_{\infty}(V) = ind_r \ell_{\infty}(v_r)$ where $(v_r(n, m))_{r \in \mathbb{N}}$ is a decreasing sequence of weights such that, if s > r, $\frac{v_s}{v_r} \in c_0(\mathbb{Z}^2)$:

$$\Lambda := \{ \alpha := (\alpha_{n,m})_{n,m \in \mathbb{Z}} : \sup \frac{|\alpha_{n,m}|}{h(n+im)} < \infty \text{ for every } h \in \mathcal{K} \}.$$

Using a result of Taylor.

Example

The evaluations $\{\delta_{n+im}\}_{n,m\in\mathbb{Z}}$ over the lattice points $\{n+im: n, m=0, \pm 1, \pm 2, \ldots\}$ is a Λ -frame for $Exp(\mathbb{C})$.

Juan Miguel Ribera Puchades (UPV)

Bibliografía

Bibliografía

- J. Bonet, C. Fernández, A. Galbis y J. M. Ribera Shrinking and boundedly complete Schauder frames in Fréchet spaces, J. Math. Anal. Appl. 410 (2014), no. 2, 953—966.
- D. Carando y S. Lassalle Duality, reflexivity and Schauder frames in Banach spaces, Studia Math. 191 (2009), 67–80.
- P. Casazza, O. Christensen y D. T. Stoeva Frame expansions in separable Banach spaces, J. Math. Anal. Appl. 307 (2005), 710–723.
- Yu. F. Korobeĭnik On absolutely representing systems in spaces of infinitely differentiable functions, J. Math. Anal. Appl. 139 (2000), 175–188.
- B. A. Taylor Discrete sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc. 163 (1972), 207–214

Frames in Fréchet spaces

FNRS Group - Functional Analysis Esneux

Juan Miguel Ribera Puchades

Juan Miguel Ribera Puchades (UPV)

Frames in Fréchet spaces

Esneux, 12 Jun 2014

47