Ergodic theory and linear dynamics - Episode 2

Frédéric Bayart

Université Clermont-Ferrand 2

February 2011
Summary of Episode 1

• We want to study, given $T \in \mathcal{L}(X)$, if there exists a measure μ on X with full support such that T is a measure-preserving and ergodic transformation with respect to μ.
Summary of Episode 1

• We want to study, given $T \in \mathcal{L}(X)$, if there exists a measure μ on X with full support such that T is a measure-preserving and ergodic transformation with respect to μ.

• We consider Gaussian measures μ on X;
Summary of Episode 1

• We want to study, given $T \in \mathcal{L}(X)$, if there exists a measure μ on X with full support such that T is a measure-preserving and ergodic transformation with respect to μ.

• We consider Gaussian measures μ on X;

• They are characterized by their covariance operator $R = KK^*$

$$\langle R(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle \langle y^*, z \rangle} \, d\mu(z);$$
Summary of Episode 1

• We want to study, given $T \in \mathcal{L}(X)$, if there exists a measure μ on X with full support such that T is a measure-preserving and ergodic transformation with respect to μ.

• We consider Gaussian measures μ on X;

• They are characterized by their covariance operator $R = KK^*$

$$\langle R(x^*), y^* \rangle = \int_X \langle x^*, z \rangle \langle y^*, z \rangle d\mu(z);$$

• μ has full support if and only if K has dense range;
Summary of Episode 1

- We want to study, given $T \in \mathcal{L}(X)$, if there exists a measure μ on X with full support such that T is a measure-preserving and ergodic transformation with respect to μ.
- We consider Gaussian measures μ on X;
- They are characterized by their covariance operator $R = KK^*$

\[
\langle R(x^*), y^* \rangle = \int_X \overline{\langle x^*, z \rangle} \langle y^*, z \rangle \, d\mu(z);
\]

- μ has full support if and only if K has dense range;
- $T \in \mathcal{L}(X)$ is measure-preserving if and only if $TRT^* = T$;
Summary of Episode 1

• We want to study, given $T \in \mathcal{L}(X)$, if there exists a measure μ on X with full support such that T is a measure-preserving and ergodic transformation with respect to μ.

• We consider Gaussian measures μ on X;

• They are characterized by their covariance operator $R = KK^*$

$$\langle R(x^*), y^* \rangle = \int_X \langle x^*, z \rangle \langle y^*, z \rangle \, d\mu(z);$$

• μ has full support if and only if K has dense range;

• $T \in \mathcal{L}(X)$ is measure-preserving if and only if $TRT^* = T$;

• We will not characterize ergodicity, but two stronger notions.
Weakly mixing - Strongly mixing

$T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ is \textbf{weakly mixing}

\[\iff \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |\mu(A \cap T^{-n}(B)) - \mu(A)\mu(B)| = 0 \quad (A, B \in \mathcal{B})\]

\[\iff \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \left| \int_X f(T^n z) g(z) \, d\mu(z) - \int_X f \, d\mu \int_X g \, d\mu \right| = 0.\]

$T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ is \textbf{strongly mixing}

\[\iff \lim_{n \to \infty} \mu(A \cap T^{-n}(B)) = \mu(A)\mu(B) \quad (A, B \in \mathcal{B})\]

\[\iff \lim_{n \to \infty} \int_X f(T^n z) g(z) \, d\mu(z) = \int_X f \, d\mu \int_X g \, d\mu \quad (f, g \in L^2(X, \mu)).\]
The characterization of mixing properties

Theorem (Rudnicki, 1993)

Let μ be a Gaussian measure on X with full support and covariance operator R. Let $T \in \mathcal{L}(X)$ be measure-preserving. The following are equivalent:

(i) T is weakly mixing (strongly mixing, respectively) with respect to μ;

(ii) For all $x^*, y^* \in X^*$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |\langle RT^n(x^*), y^* \rangle| = 0$$

($\lim_{n \to \infty} \langle RT^n(x^*), y^* \rangle = 0$, respectively).
The difficult implication - I

Assumption:

\[\lim_{n \to \infty} \langle RT^n(x^*), y^* \rangle = 0 \quad (x^*, y^*) \in X^*. \]

Conclusion:

\[\lim_{n \to \infty} \mu(A \cap T^{-n}(B)) = \mu(A)\mu(B) \quad (A, B \in \mathcal{B}). \quad (1) \]
The difficult implication - I

Assumption:

\[
\lim_{n \to \infty} \langle RT^n(x^*), y^* \rangle = 0 \quad (x^*, y^*) \in X^*.
\]

Conclusion:

\[
\lim_{n \to \infty} \mu(A \cap T^{-n}(B)) = \mu(A) \mu(B) \quad (A, B \in \mathcal{B}). \tag{1}
\]

Definition

A \subset X is a **cylinder set** if there exist \(N \geq 1, (x_1^*, \ldots, x_N^*) \) a family of independent vectors of \(X^* \) and \(E \subset \mathbb{C}^N \) such that

\[
A = \{ x \in X; \ (\langle x_1^*, x \rangle, \ldots, \langle x_N^*, x \rangle) \in E \}.
\]
The difficult implication - I

Assumption:

\[\lim_{n \to \infty} \langle RT^n(x^*), y^* \rangle = 0 \quad (x^*, y^*) \in X^*. \]

Conclusion:

\[\lim_{n \to \infty} \mu(A \cap T^{-n}(B)) = \mu(A) \mu(B) \quad (A, B \in \mathcal{B}). \] \hspace{1cm} (1)

Definition

A \subset X is a **cylinder set** if there exist \(N \geq 1, (x_1^*, \ldots, x_N^*) \) a family of independent vectors of \(X^* \) and \(E \subset \mathbb{C}^N \) such that

\[A = \{ x \in X; \ (\langle x_1^*, x \rangle, \ldots, \langle x_N^*, x \rangle) \in E \}. \]

It suffices to testify (1) for \(A, B \) cylinder sets.
The difficult implication - II

Definition
A \subset X is a **cylinder set** if there exist \(N \geq 1, (x_1^*, \ldots, x_N^*) \) a family of independent vectors of \(X^* \) and \(E \subset \mathbb{C}^N \) such that

\[
A = \{ x \in X; (\langle x_1^*, x \rangle, \ldots, \langle x_N^*, x \rangle) \in E \}.
\]

Cylinder sets are "finite-dimensional sets"
The difficult implication - II

Definition

$A \subset X$ is a **cylinder set** if there exist $N \geq 1$, (x_1^*, \ldots, x_N^*) a family of independent vectors of X^* and $E \subset \mathbb{C}^N$ such that

$$A = \{ x \in X; (\langle x_1^*, x \rangle, \ldots, \langle x_N^*, x \rangle) \in E \}.$$

Cylinder sets are ”finite-dimensional sets” \implies we need a finite-dimensional lemma.

Lemma

Let (ν_n) be a sequence of Gaussian measures on some finite-dimensional Banach space $E = \mathbb{C}^N$, and let ν be a Gaussian measure on E with full support. Assume that $R_{\nu_n} \to R_\nu$ as $n \to \infty$. Then $\nu_n(Q) \to \nu(Q)$ for every Borel set $Q \subset E$.
The difficult implication - III

Assumption:

$$\lim_{n \to \infty} \langle RT^n(x^*), y^* \rangle = 0 \quad (x^*, y^*) \in X^*.$$

$$A = \{ x \in X; \langle x_1^*, x \rangle, \ldots, \langle x_N^*, x \rangle \in E \}$$

$$B = \{ x \in X; \langle y_1^*, x \rangle, \ldots, \langle y_M^*, x \rangle \in F \}.$$

Aim:

$$\lim_{n \to \infty} \mu(A \cap T^{-n}(B)) = \mu(A)\mu(B).$$

Tool:

Lemma

Let \((\nu_n) \) be a sequence of Gaussian measures on some finite-dimensional Banach space \(E = \mathbb{C}^N \), and let \(\nu \) be a Gaussian measure on \(E \) with full support. Assume that \(R_{\nu_n} \to R_\nu \) as \(n \to \infty \). Then \(\nu_n(Q) \to \nu(Q) \) for every Borel set \(Q \subseteq E \).
How to find an ergodic measure

Questions to solve

• What kind of measures shall we consider?
• Given $T \in \mathcal{L}(X)$ and a measure μ on X, how to prove that T is a measure-preserving transformation?
• Given $T \in \mathcal{L}(X)$ and a measure μ on X, how to prove that T is ergodic with respect to μ?
• What kind of conditions on $T \in \mathcal{L}(X)$ ensures that we can construct a measure μ on X such that the dynamical system (T, μ) is ergodic?
Having sufficiently many \mathbb{T}-eigenvectors

Definition
A vector $x \in X$ is a \mathbb{T}-eigenvector for T if $T(x) = \lambda x$ for some $\lambda \in \mathbb{T}$.

Definition
A vector \(x \in X \) is a \(\mathbb{T} \)-\textit{eigenvector} for \(T \) if \(T(x) = \lambda x \) for some \(\lambda \in \mathbb{T} \).

Definition
A map \(E : \mathbb{T} \to X \) is a \textbf{perfectly spanning} \(\mathbb{T} \)-\textit{eigenvector field} provided
\begin{enumerate}
 \item \(E \in L^\infty(\mathbb{T}, X) \);
 \item \(\forall \lambda \in \mathbb{T}, \ TE(\lambda) = \lambda E(\lambda) \);
 \item For any \(A \subset \mathbb{T} \) with \(m(A) = 0 \), then \(\text{span}(E(\lambda); \ \lambda \in A) \) is dense in \(A \).
\end{enumerate}
How to find an ergodic measure

The operator K_E

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E. Define

$$K_E : L^2(\mathbb{T}, dm) \rightarrow X$$

$$f \mapsto \int_{\mathbb{T}} f(\lambda)E(\lambda)dm(\lambda)$$

and $R = K_EK_E^*$. Then

1. K_E has dense range;
2. $TRT^* = T$;
3. For any $x^*, y^* \in X^*$, $\langle RT^{*n}(x^*), y^* \rangle \rightarrow 0$.
The intertwining equation

$$K_E : L^2(\mathbb{T}, dm) \rightarrow X$$

$$f \mapsto \int_{\mathbb{T}} f(\lambda)E(\lambda) \, dm(\lambda)$$
The intertwining equation

$$K_E : L^2(\mathbb{T}, dm) \rightarrow X$$

$$f \leftrightarrow \int_{\mathbb{T}} f(\lambda)E(\lambda)dm(\lambda)$$

$$V : L^2(\mathbb{T}, dm) \rightarrow L^2(\mathbb{T}, dm)$$

$$f \leftrightarrow zf$$
The intertwining equation

\[K_E : L^2(\mathbb{T}, dm) \rightarrow X \]
\[f \mapsto \int_{\mathbb{T}} f(\lambda)E(\lambda)dm(\lambda) \]

\[V : L^2(\mathbb{T}, dm) \rightarrow L^2(\mathbb{T}, dm) \]
\[f \mapsto zf \]

\[TK = KV. \]
The intertwining equation

\[K_E : L^2(\mathbb{T}, dm) \to X \]
\[f \mapsto \int_{\mathbb{T}} f(\lambda) E(\lambda) \, dm(\lambda) \]

\[V : L^2(\mathbb{T}, dm) \to L^2(\mathbb{T}, dm) \]
\[f \mapsto zf \]

\[TK = KV. \]

\[TK_E(f) = \int_{\mathbb{T}} f(\lambda) TE(\lambda) \, dm(\lambda) \]
\[= \int_{\mathbb{T}} f(\lambda) \lambda E(\lambda) \, dm(\lambda) \]
\[= KVf. \]
Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K_E^*$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if $K \mu$ has dense range;
2. T is measure-preserving if and only if $TR = T R^* = T$;
3. $T \in \mathcal{L}(X)$ is strongly-mixing with respect to μ if and only if $\lim_{n \to \infty} \langle R \mu T^n(x^*), y^* \rangle = 0$ (x^*, y^*) from X.

Is R the covariance operator of some Gaussian measure μ?
Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K_E^*$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range;
Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K_E^*$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range;
 Ok for K_E!
Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K^*_E$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range; Ok for K_E!

2. T is measure-preserving if and only if $TR_\mu T^* = T$;
How to find an ergodic measure

Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K_E^*$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range; Ok for K_E!

2. T is measure-preserving if and only if $TR_\mu T^* = T$; Ok for R!
Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K^*_E$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range; Ok for K_E!

2. T is measure-preserving if and only if $T R_\mu T^* = T$; Ok for R!

3. $T \in \mathcal{L}(X)$ is strongly-mixing with respect to μ if and only if

$$\lim_{n \to \infty} \langle R_\mu T^{*n}(x^*), y^* \rangle = 0 \quad (x^*, y^*) \in X^*.$$
Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K_E^*$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range; Ok for K_E!
2. T is measure-preserving if and only if $TR_\mu T^* = T$; Ok for R!
3. $T \in \mathcal{L}(X)$ is strongly-mixing with respect to μ if and only if

$$\lim_{n \to \infty} \langle R_\mu T^{*n}(x^*), y^* \rangle = 0 \ (x^*, y^*) \in X^*.$$

Ok for R!
Comparison

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field E, let $R = K_E K^*_E$ and let μ be a Gaussian measure on X.

1. μ has full support if and only if K_μ has dense range; Ok for K_E!
2. T is measure-preserving if and only if $TR_\mu T^* = T$; Ok for R!
3. $T \in \mathcal{L}(X)$ is strongly-mixing with respect to μ if and only if
 \[
 \lim_{n \to \infty} \langle R_\mu T^{*n}(x^*), y^* \rangle = 0 \quad (x^*, y^*) \in X^*.
 \]
 Ok for R!

Is R the covariance operator of some Gaussian measure μ?
Is $R : X^* \to X$ a covariance operator?

This is a difficult problem!
Is $R : X^* \rightarrow X$ a covariance operator?

This is a difficult problem!

Definition

Let \mathcal{H} be a separable Hilbert space. An operator $K \in \mathcal{L}(\mathcal{H}, X)$ is said to be \textbf{γ-radonifying} if for some (equivalently, for any) orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.

Proposition

Let $K \in \mathcal{L}(\mathcal{H}, X)$ be γ-radonifying. Then $R = KK^*$ is the covariance operator of some Gaussian measure μ on X. It suffices to take for μ the distribution of the Gaussian sum $\sum g_n(\omega)Ke_n$.
How to find an ergodic measure

Is $R : X^* \to X$ a covariance operator?

This is a difficult problem!

Definition
Let \mathcal{H} be a separable Hilbert space. An operator $K \in \mathcal{L}(\mathcal{H}, X)$ is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.

Proposition
Let $K \in \mathcal{L}(\mathcal{H}, X)$ be γ-radonifying. Then $R = KK^*$ is the covariance operator of some Gaussian measure μ on X.
Is $R : X^* \to X$ a covariance operator?

This is a difficult problem!

Definition
Let \mathcal{H} be a separable Hilbert space. An operator $K \in \mathcal{L}(\mathcal{H}, X)$ is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.

Proposition
Let $K \in \mathcal{L}(\mathcal{H}, X)$ be γ-radonifying. Then $R = KK^*$ is the covariance operator of some Gaussian measure μ on X.

It suffices to take for μ the distribution of the Gaussian sum $\sum_n g_n K e_n$.
On a Hilbert space

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.

Fact. On a Hilbert space, a Gaussian sum $\sum_n g_n x_n$ converges almost surely if and only if $\sum_n \|x_n\|^2 < +\infty$.
On a Hilbert space

\(K \in \mathcal{L}(\mathcal{H}, X) \) is \(\gamma \)-radonifying if for some orthonormal basis \((e_n)\) of \(\mathcal{H} \), the Gaussian series \(\sum g_n(\omega)K(e_n) \) converges almost surely.

Fact. On a Hilbert space, a Gaussian sum \(\sum_n g_n x_n \) converges almost surely if and only if \(\sum_n \|x_n\|^2 < +\infty \).

On a Hilbert space, \(\gamma \)-radonifying operators and Hilbert-Schmidt operators coincide!
On a Hilbert space

$K \in \mathcal{L}(\mathcal{H}, \mathcal{X})$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.

Fact. On a Hilbert space, a Gaussian sum $\sum_n g_n x_n$ converges almost surely if and only if $\sum_n \|x_n\|^2 < +\infty$.

On a Hilbert space, γ-radonifying operators and Hilbert-Schmidt operators coincide!

$$K_E : L^2(\mathbb{T}, dm) \rightarrow \mathcal{X}$$

$$f \mapsto \int_{\mathbb{T}} f(\lambda)E(\lambda)dm(\lambda)$$
How to find an ergodic measure

On a Hilbert space

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.

Fact. On a Hilbert space, a Gaussian sum $\sum_n g_n x_n$ converges almost surely if and only if $\sum_n \|x_n\|^2 < +\infty$.

On a Hilbert space, γ-radonifying operators and Hilbert-Schmidt operators coincide!

$$K_E : L^2(\mathbb{T}, dm) \rightarrow X$$

$$f \mapsto \int_{\mathbb{T}} f(\lambda)E(\lambda)dm(\lambda)$$

It is Hilbert-Schmidt!

$R = K_E K_E^*$ is the covariance operator of some Gaussian measure!
Theorem on a Hilbert space

Theorem (B. Grivaux (2006))

Let X be a separable Hilbert space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvectorfield. Then there exists a Gaussian measure μ on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.
What about Banach spaces?

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges almost surely.
What about Banach spaces?

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges in $L^2(\Omega, X)$.
What about Banach spaces?

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges in $L^2(\Omega, X)$.

Definition

A Banach space X is said to have (Gaussian) type $p \in [1, 2]$ if

$$\left\| \sum_n g_n x_n \right\|_{L^2(\Omega, X)} \leq C \left(\sum_n \|x_n\|^p \right)^{\frac{1}{p}},$$

for some finite constant C and every finite sequence $(x_n) \subset X$.
What about Banach spaces?

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges in $L^2(\Omega, X)$.

Definition

A Banach space X is said to have (Gaussian) type $p \in [1, 2]$ if

$$
\left\| \sum_n g_n x_n \right\|_{L^2(\Omega, X)} \leq C \left(\sum_n \|x_n\|^p \right)^{\frac{1}{p}},
$$

for some finite constant C and every finite sequence $(x_n) \subset X$.

- A Hilbert space has type 2;
- L^p-spaces have type $\min(p, 2)$;
- Any Banach space has type 1;
What about Banach spaces?

$K \in \mathcal{L}(\mathcal{H}, X)$ is γ-radonifying if for some orthonormal basis (e_n) of \mathcal{H}, the Gaussian series $\sum g_n(\omega)K(e_n)$ converges in $L^2(\Omega, X)$.

Definition

A Banach space X is said to have (Gaussian) **type** $p \in [1, 2]$ if

$$\left\| \sum_n g_n x_n \right\|_{L^2(\Omega, X)} \leq C \left(\sum_n \|x_n\|^p \right)^{1/p},$$

for some finite constant C and every finite sequence $(x_n) \subset X$.

Corollary

Let X be a Banach space with type p and let $K \in \mathcal{L}(\mathcal{H}, X)$. Then K is γ-radonifying as soon as $\sum_n \|Ke_n\|^p < +\infty$ for some orthonormal basis (e_n) of \mathcal{H}.
What about Banach spaces?

Theorem (B. Matheron, 2009)
Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field E. Suppose moreover that:

- X has type p;
- E is α-Hölderian for some $\alpha > \frac{1}{p} - \frac{1}{2}$.

Then there exists a Gaussian measure μ on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.
Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field E. Suppose moreover that:

- X has type p;
- E is α-Hölderian for some $\alpha > \frac{1}{p} - \frac{1}{2}$.

Then there exists a Gaussian measure μ on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

One has to find an orthonormal basis (e_n) of $L^2(\mathbb{T})$ such that $\sum_n \|K e_n\|^p < +\infty$.

• $(e_n) = (e_{\text{int}})$ (B. Grivaux 2007). The result is less good.

• $(e_n) = \text{the Haar basis of } L^2(\mathbb{T})$.

What about Banach spaces?
What about Banach spaces?

Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field E. Suppose moreover that:

- X has type p;
- E is α-Hölderian for some $\alpha > \frac{1}{p} - \frac{1}{2}$.

Then there exists a Gaussian measure μ on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

One has to find an orthonormal basis (e_n) of $L^2(\mathbb{T})$ such that

$$\sum_n \|Ke_n\|^p < +\infty.$$

- $(e_n) = (e^{int})_{n \in \mathbb{Z}}$ (B. Grivaux 2007). The result is less good.
How to find an ergodic measure

What about Banach spaces?

Theorem (B. Matheron, 2009)

Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field E. Suppose moreover that:

- X has type p;
- E is α-Hölderian for some $\alpha > \frac{1}{p} - \frac{1}{2}$.

Then there exists a Gaussian measure μ on X with full support, with respect to which T is a strongly-mixing measure-preserving transformation.

One has to find an orthonormal basis (e_n) of $L^2(\mathbb{T})$ such that

$$\sum_n \|Ke_n\|^p < +\infty.$$

- $(e_n) = (e^{int})_{n \in \mathbb{Z}}$ (B. Grivaux 2007). The result is less good.
- $(e_n) =$ the Haar basis of $L^2(\mathbb{T})$.
Theorem (B. 2011)

Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field. Then there exists a Gaussian measure μ on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.
How to find an ergodic measure

Banach spaces=Hilbert spaces!

Theorem (B. 2011)

Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field. Then there exists a Gaussian measure μ on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.

Strategy. Instead of considering

$$K_E : L^2(\mathbb{T}, dm) \to X,$$

consider

$$K_E : L^2(\mathbb{T}, \sigma) \to X,$$

with σ a continuous measure on \mathbb{T}.

Theorem (B. 2011)
Let X be a separable Banach space and let $T \in \mathcal{L}(X)$ be such that T has a perfectly spanning \mathbb{T}-eigenvector field. Then there exists a Gaussian measure μ on X with full support, with respect to which T is a weakly-mixing measure-preserving transformation.

Strategy. Instead of considering

$$K_E : L^2(\mathbb{T}, dm) \rightarrow X,$$

consider

$$K_E : L^2(\mathbb{T}, \sigma) \rightarrow X,$$

with σ a continuous measure on \mathbb{T}. σ will be carried on Cantor set!
Cantor sets

Definition
A subset \mathcal{C} of \mathbb{T} is a **Cantor set** if it is the continuous image of $\{-1, 1\}^\mathbb{N}$.
Cantor sets

Definition
A subset \mathcal{C} of \mathbb{T} is a **Cantor set** if it is the continuous image of $\{-1, 1\}^\mathbb{N}$.

$\{-1, 1\}^\mathbb{N}$ will be endowed with its Haar measure ν.
Cantor sets

Definition
A subset \mathcal{C} of \mathbb{T} is a **Cantor set** if it is the continuous image of $\{-1, 1\}^\mathbb{N}$.

$\{-1, 1\}^\mathbb{N}$ will be endowed with its Haar measure ν. ν is the tensor product $P_1 \otimes P_2 \otimes \ldots$, with, one each coordinate,

$$P_k(\{-1\}) = 1/2 \quad \text{and} \quad P_k(\{1\}) = 1/2.$$
An orthonormal basis of $L^2(\{-1, 1\}^\omega)$.

Any $\omega \in \{-1, 1\}^\mathbb{N}$ can be written

$$\omega = (\varepsilon_1(\omega), \varepsilon_2(\omega), \ldots).$$

Definition

Let $A \subset \mathcal{P}_f(\mathbb{N})$. The **Walsh function** w_A is defined by

$$w_A(\omega) = \prod_{n \in A} \varepsilon_n(\omega).$$
An orthonormal basis of $L^2(\{-1, 1\}^\mathbb{N}, \nu)$.

Any $\omega \in \{-1, 1\}^\mathbb{N}$ can be written

$$\omega = (\varepsilon_1(\omega), \varepsilon_2(\omega), \ldots).$$

Definition

Let $A \subset \mathcal{P}_f(\mathbb{N})$. The **Walsh function** w_A is defined by

$$w_A(\omega) = \prod_{n \in A} \varepsilon_n(\omega).$$

Theorem

$(w_A)_{A \in \mathcal{P}_f(\mathbb{N})}$ is an orthonormal basis of $L^2(\{-1, 1\}^\mathbb{N}, \nu)$.
A new γ-radonifying operator

Lemma

Let $\phi : \{-1, 1\}^\mathbb{N} \to \mathcal{C}$ be an homeomorphism and let σ be the image of the Haar measure ν on $\{-1, 1\}^\mathbb{N}$ by ϕ. Let $u : \{-1, 1\}^\mathbb{N} \to X$ be a continuous function such that, for any $n \geq 1$, for any $(s_1, \ldots, s_{n-1}) \in \{-1, 1\}^{n-1}$, any $s', s'' \in \{-1, 1\}^\mathbb{N}$,

$$\|u(s_1, \ldots, s_{n-1}, 1, s') - u(s_1, \ldots, s_{n-1}, -1, s'')\| \leq 3^{-n}.$$

Let also $E = u \circ \phi^{-1}$. Then there exists an orthonormal basis (e_n) of $L^2(\mathbb{T}, d\sigma)$ such that the operator $K_E : L^2(\mathbb{T}, d\sigma) \to X$ satisfies

$$\sum_n \|K_E(e_n)\| < +\infty.$$
What remains to be done

• Prove that, if T admits a perfectly spanning \mathbb{T}-eigenvector field, then one can construct $\phi : \mathcal{C} \to \mathbb{T}$, $u : \mathcal{C} \to X$ such that

$$\|u(s_1, \ldots, s_{n-1}, 1, s') - u(s_1, \ldots, s_{n-1}, -1, s'')\| \leq 3^{-n}$$

and $u(s)$ is a \mathbb{T}-eigenvector with eigenvalue $\phi(s)$.
What remains to be done

• Prove that, if T admits a perfectly spanning \mathbb{T}-eigenvector field, then one can construct $\phi : \mathcal{C} \rightarrow \mathbb{T}$, $u : \mathcal{C} \rightarrow X$ such that

$$\|u(s_1, \ldots, s_{n-1}, 1, s') - u(s_1, \ldots, s_{n-1}, -1, s'')\| \leq 3^{-n}$$

and $u(s)$ is a \mathbb{T}-eigenvector with eigenvalue $\phi(s)$.

• Prove that everything remains true with $K_E : L^2(\mathbb{T}, d\sigma) \rightarrow X$ instead of $K_E : L^2(\mathbb{T}, dm) \rightarrow X$.
What remains to be done

• Prove that, if T admits a perfectly spanning \mathbb{T}-eigenvector field, then one can construct $\phi : C \to \mathbb{T}$, $u : C \to X$ such that

$$\|u(s_1, \ldots, s_{n-1}, 1, s') - u(s_1, \ldots, s_{n-1}, -1, s'')\| \leq 3^{-n}$$

and $u(s)$ is a \mathbb{T}-eigenvector with eigenvalue $\phi(s)$.

• Prove that everything remains true with $K_E : L^2(\mathbb{T}, d\sigma) \to X$ instead of $K_E : L^2(\mathbb{T}, dm) \to X$.

In fact, we will have to consider several such maps instead of one!

The construction of Cantor sets

Lemma

Let $T \in \mathcal{L}(X)$ with a perfectly spanning \mathbb{T}-eigenvector field. Let also (ε_n) be a sequence of positive real numbers. There exist a sequence (C_i) of subsets of \mathbb{T}, a sequence of homeomorphisms (ϕ_i) from $\{-1, 1\}^\mathbb{N}$ onto C_i and a sequence of continuous functions (u_i), $u_i : \{-1, 1\}^\mathbb{N} \to S_X$ such that, setting $E_i = u_i \circ \phi_i^{-1}$,

(a) for any $i \geq 1$ and any $\lambda \in C_i$, $TE_i(\lambda) = \lambda E_i(\lambda)$;

(b) $\text{span}(E_i(\lambda); \ i \geq 1, \ \lambda \in C_i)$ is dense in X;

(c) for any $n \geq 1$, any $(s_1, \ldots, s_{n-1}) \in \{-1, 1\}^{n-1}$, any $s', s'' \in \{-1, 1\}^\mathbb{N}$,

$$\|u_i(s_1, \ldots, s_{n-1}, 1, s') - u_i(s_1, \ldots, s_{n-1}, -1, s'')\| \leq \varepsilon_n.$$
Step 1 Since E has a perfectly spanning \mathbb{T}-eigenvector field, there exists a sequence (x_i) satisfying:

- each x_i belongs to S_X, is a \mathbb{T}-eigenvector and the corresponding eigenvalues (λ_i) are all different;
- each x_i is a limit of a subsequence $(x_{n_k})_{k \geq 1}$;
- $\text{span}(x_i; \ i \geq 1)$ is dense in X.

How to prove this?
How to find an ergodic measure

How to prove this?

Step 1 Since E has a perfectly spanning \mathbb{T}-eigenvector field, there exists a sequence (x_i) satisfying:

- each x_i belongs to S_X, is a \mathbb{T}-eigenvector and the corresponding eigenvalues (λ_i) are all different;
- each x_i is a limit of a subsequence $(x_{n_k})_{k \geq 1}$;
- $\text{span}(x_i; \ i \geq 1)$ is dense in X.

Step 2 The construction...
Proof of the main result

We apply the previous lemma with $\varepsilon_n = 3^{-n}$. We get C_i, u_i, E_i, σ_i and an orthonormal basis of $L^2(\mathbb{T}, d\sigma_i)$ such that

$$\sum_n \|K_{E_i}(e_{n,i})\| < +\infty.$$
Proof of the main result

We apply the previous lemma with $\varepsilon_n = 3^{-n}$. We get C_i, u_i, E_i, σ_i and an orthonormal basis of $L^2(\mathbb{T}, d\sigma_i)$ such that

$$\sum_n \| K_{E_i}(e_{n,i}) \| < +\infty.$$

We set $\mathcal{H} = \bigoplus_{i \geq 1} L^2(\mathbb{T}, d\sigma_i)$ and let $K : \mathcal{H} \to X$ be defined by

$$K(\bigoplus_i f_i) = \sum_i \alpha_i K_{E_i}(f_i)$$

where (α_i) satisfies

(a) $\sum_i \alpha_i^2 \| E_i \|^2_{L^2(\mathbb{T}, \sigma_i, X)} < +\infty$
Proof of the main result

We apply the previous lemma with $\varepsilon_n = 3^{-n}$. We get C_i, u_i, E_i, σ_i and an orthonormal basis of $L^2(\mathbb{T}, d\sigma_i)$ such that

$$\sum_n \| K_{E_i}(e_{n,i}) \| < +\infty.$$

We set $\mathcal{H} = \bigoplus_{i \geq 1} L^2(\mathbb{T}, d\sigma_i)$ and let $K : \mathcal{H} \rightarrow X$ be defined by

$$K(\bigoplus_i f_i) = \sum_i \alpha_i K_{E_i}(f_i)$$

where (α_i) satisfies

(a) $\sum_i \alpha_i^2 \| E_i \|_{L^2(\mathbb{T},\sigma_i,X)}^2 < +\infty$, so that K is well-defined;
Proof of the main result

We apply the previous lemma with $\varepsilon_n = 3^{-n}$. We get C_i, u_i, E_i, σ_i and an orthonormal basis of $L^2(\mathbb{T}, d\sigma_i)$ such that

$$\sum_n \|K_{E_i}(e_{n,i})\| < +\infty.$$

We set $\mathcal{H} = \bigoplus_{i \geq 1} L^2(\mathbb{T}, d\sigma_i)$ and let $K : \mathcal{H} \to X$ be defined by

$$K(\bigoplus_i f_i) = \sum_i \alpha_i K_{E_i}(f_i)$$

where (α_i) satisfies

(a) $\sum_i \alpha_i^2 \|E_i\|_{L^2(\mathbb{T},\sigma_i,X)}^2 < +\infty$, so that K is well-defined;

(b) $\sum_i \alpha_i \sum_n \|K_{E_i}(e_{n,i})\|_X < +\infty$
Proof of the main result

We apply the previous lemma with $\varepsilon_n = 3^{-n}$. We get C_i, u_i, E_i, σ_i and an orthonormal basis of $L^2(\mathbb{T}, d\sigma_i)$ such that

$$\sum_n \| K_{E_i}(e_{n,i}) \| < +\infty.$$

We set $\mathcal{H} = \bigoplus_{i \geq 1} L^2(\mathbb{T}, d\sigma_i)$ and let $K : \mathcal{H} \to X$ be defined by

$$K(\bigoplus_i f_i) = \sum_i \alpha_i K_{E_i}(f_i)$$

where (α_i) satisfies

(a) $\sum_i \alpha_i^2 \| E_i \|^2_{L^2(\mathbb{T}, \sigma_i, X)} < +\infty$, so that K is well-defined;

(b) $\sum_i \alpha_i \sum_n \| K_{E_i}(e_{n,i}) \|_X < +\infty$, so that K is γ-radonifying.
Proof of the main result

We apply the previous lemma with \(\varepsilon_n = 3^{-n} \). We get \(C_i, u_i, E_i, \sigma_i \) and an orthonormal basis of \(L^2(\mathbb{T}, d\sigma_i) \) such that

\[
\sum_{n} \| K_{E_i}(e_{n,i}) \| < +\infty.
\]

We set \(\mathcal{H} = \oplus_{i \geq 1} L^2(\mathbb{T}, d\sigma_i) \) and let \(K : \mathcal{H} \to X \) be defined by

\[
K(\oplus_i f_i) = \sum_i \alpha_i K_{E_i}(f_i)
\]

where \((\alpha_i) \) satisfies

(a) \(\sum_i \alpha_i^2 \| E_i \|_{L^2(\mathbb{T}, \sigma_i, X)}^2 < +\infty \), so that \(K \) is well-defined;

(b) \(\sum_i \alpha_i \sum_n \| K_{E_i}(e_{n,i}) \|_X < +\infty \), so that \(K \) is \(\gamma \)-radonifying.

Everything works with \(R = KK^* \).
In fact, we have obtained the following statement:

Theorem

Let $T \in \mathcal{L}(X)$ *be such that, for any* $D \subset \mathbb{T}$ *countable,*

$$\ker(T - \lambda I; \lambda \in \mathbb{T}\setminus D)$$ *is a dense subset of* X. *Then there exists a Gaussian measure* μ *on* X *with full support, with respect to which* T *is a weakly-mixing measure-preserving transformation.*
Example - backward weighted shifts

Let B_w be the **weighted backward shift** on $\ell^p(\mathbb{N})$ with weight sequence (w_n):

$$B_w(x_0, x_1, \ldots) = (w_1 x_1, w_2 x_2, w_3 x_3, \ldots).$$
Let B_w be the **weighted backward shift** on $\ell^p(\mathbb{N})$ with weight sequence (w_n):

$$B_w(x_0, x_1, \ldots) = (w_1 x_1, w_2 x_2, w_3 x_3, \ldots).$$

Suppose that

$$\sum_{n \geq 1} \frac{1}{(w_1 \cdots w_n)^p} < \infty.$$
Example - backward weighted shifts

Let B_w be the **weighted backward shift** on $\ell^p(\mathbb{N})$ with weight sequence (w_n):

$$B_w(x_0, x_1, \ldots) = (w_1x_1, w_2x_2, w_3x_3, \ldots).$$

Suppose that

$$\sum_{n \geq 1} \frac{1}{(w_1 \cdots w_n)^p} < \infty.$$

There exists a Gaussian measure μ on $\ell^p(\mathbb{N})$ with full support, with respect to which B_w is a measure-preserving and weakly mixing transformation.
The condition

\[\sum_{n \geq 1} \frac{1}{(w_1 \cdots w_n)^p} < \infty. \]

ensures that \(B_w \) admit \(\mathbb{T} \)-eigenvectors:

\[E(\lambda) := \sum_{n \geq 0} \frac{\lambda^n}{w_1 \cdots w_n} e_n. \]
How to find an ergodic measure

Example - backward weighted shifts

The condition

$$\sum_{n \geq 1} \frac{1}{(w_1 \cdots w_n)^p} < \infty.$$

ensures that B_w admit \mathbb{T}-eigenvectors:

$$E(\lambda) := \sum_{n \geq 0} \frac{\lambda^n}{w_1 \cdots w_n} e_n.$$

This eigenvector field is perfectly spanning.
Example - backward weighted shifts

\[E(\lambda) := \sum_{n \geq 0} \frac{\lambda^n}{w_1 \cdots w_n} e_n. \]

is perfectly spanning.
Example - backward weighted shifts

\[E(\lambda) := \sum_{n \geq 0} \frac{\lambda^n}{w_1 \cdots w_n} e_n. \]

is perfectly spanning. Pick \(y \in \ell^q \) such that

\[\langle y, E(\lambda) \rangle = 0 \text{ a.e..} \]

Then

\[g(\lambda) = \sum_n \frac{y_n}{w_1 \cdots w_n} \lambda^n = 0 \text{ a.e..} \]
Example - backward weighted shifts

\[E(\lambda) := \sum_{n \geq 0} \frac{\lambda^n}{w_1 \cdots w_n} e_n. \]

is perfectly spanning. Pick \(y \in \ell^q \) such that

\[\langle y, E(\lambda) \rangle = 0 \text{ a.e..} \]

Then

\[g(\lambda) = \sum_n \frac{y_n}{w_1 \cdots w_n} \lambda^n = 0 \text{ a.e..} \]

\[\implies \hat{g}(n) = 0 \text{ for all } n \in \mathbb{N}. \]
Example - Adjoins of multipliers

\[H^2(\mathbb{D}) = \left\{ f : \mathbb{D} \to \mathbb{C}; \|f\|^2_{H^2} := \sup_{r < 1} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} < \infty \right\} \]

\[= \left\{ f(z) = \sum_n a_n z^n; \sum_n |a_n|^2 < +\infty \right\}. \]

\[H^\infty(\mathbb{D}) = \{ f : \mathbb{D} \to \mathbb{C}; \|f\|_\infty < +\infty \}. \]

Definition
For \(\phi \in H^\infty(\mathbb{D}) \), the multiplier \(M_\phi \) is defined by \(M_\phi(f) = \phi f \), \(f \in H^2(\mathbb{D}) \).

Theorem
If \(\phi \) is non-constant and \(\phi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset \), then there exists a Gaussian measure with full support on \(H^2(\mathbb{D}) \) with respect to which \(M_\phi^* \) is a measure-preserving and weakly mixing transformation.
Let k_z be the reproducing kernel at $z \in \mathbb{D}$:

$$\forall f \in H^2(\mathbb{D}) : f(z) = \langle f, k_z \rangle_{H^2}.$$
Let k_z be the **reproducing kernel** at $z \in \mathbb{D}$:

$$\forall f \in H^2(\mathbb{D}) : f(z) = \langle f, k_z \rangle_{H^2}.$$

k_z is an eigenvector for M^*_ϕ.

$$\langle f, M^*_\phi(k_z) \rangle_{H^2} = \langle \phi f, k_z \rangle_{H^2} = \phi(z)f(z) = \langle f, \overline{\phi(z)}k_z \rangle_{H^2}.$$
Let \(k_z \) be the **reproducing kernel** at \(z \in \mathbb{D} \):

\[
\forall f \in H^2(\mathbb{D}) : f(z) = \langle f, k_z \rangle_{H^2}.
\]

\(k_z \) is an eigenvector for \(M^*_\phi \).

\[
\langle f, M^*_\phi(k_z) \rangle_{H^2} = \langle \phi f, k_z \rangle_{H^2} = \phi(z)f(z) = \langle f, \overline{\phi(z)}k_z \rangle_{H^2}.
\]

When \(\phi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset \), one can find an open arc \(I \subset \mathbb{T} \) and a curve \(\Gamma \subset \mathbb{D} \) such that \(\phi(\Gamma) = I \).
Adjointsofmultipliers

Let k_z be the reproducing kernel at $z \in \mathbb{D}$:

$$\forall f \in H^2(\mathbb{D}) : f(z) = \langle f, k_z \rangle_{H^2}.$$

k_z is an eigenvector for M^*_ϕ.

$$\langle f, M^*_\phi(k_z) \rangle_{H^2} = \langle \phi f, k_z \rangle_{H^2} = \phi(z)f(z) = \langle f, \overline{\phi(z)k_z} \rangle_{H^2}.$$

When $\phi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$, one can find an open arc $I \subset \mathbb{T}$ and a curve $\Gamma \subset \mathbb{D}$ such that $\phi(\Gamma) = I$.

$$E(e^{i\theta}) := 1_I(e^{i\theta})k_{\phi^{-1}}(e^{i\theta}).$$

is a (conjugate) \mathbb{T}-eigenvector field.
Adjoints of multipliers

\[E(e^{i\theta}) := 1_{I}(e^{i\theta})k_{\phi^{-1}}(e^{i\theta}). \]

is perfectly spanning.
Adjoint of multipliers

\[E(e^{i\theta}) := 1_{I}(e^{i\theta})k_{\phi^{-1}}(e^{i\theta}). \]

is perfectly spanning. Pick \(f \in H^2(\mathbb{D}) \) such that

\[\langle f, E(e^{i\theta}) \rangle = 0 \text{ a.e.} \]
Adjoint of multipliers

\[E(e^{i\theta}) := 1_I(e^{i\theta})k_{\phi^{-1}}(e^{i\theta}). \]

is perfectly spanning. Pick \(f \in H^2(\mathbb{D}) \) such that

\[\langle f, E(e^{i\theta}) \rangle = 0 \text{ a.e.} \]

\[f(z) = 0 \text{ a.e. on } \Gamma. \]
Adjoint of multipliers

\[E(e^{i\theta}) := 1_I(e^{i\theta})k_{\phi^{-1}}(e^{i\theta}). \]

is perfectly spanning. Pick \(f \in H^2(\mathbb{D}) \) such that

\[\langle f, E(e^{i\theta}) \rangle = 0 \text{ a.e.} \]

\[f(z) = 0 \text{ a.e. on } \Gamma. \]

\[f \equiv 0. \]
And so on...

- Many other examples (composition operators,...);
- Many other results (about the converse, on semigroups of operators,...)
Muchas gracias!