Characterising perturbations of isomorphisms between operator algebras through spectral inclusions

A. R. Villena joint work with J. Alaminos and J. Extremera

Departamento de Análisis Matemático Universidad de Granada

Trimestre Temático de Análisis Funcional 25/01/2011 Universidad Politécnica de Valencia

Part I

Seminal results: characterising multiplicativity through spectral inclusions

A. R. Villena (Granada)

Perturbed isomorphisms and spectral inclusions

Ancient results coming from matrix theory

Ancient results coming from matrix theory

Theorem (G. Frobenius (1897))

Let $n \in \mathbb{N}$. A linear map $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$ satisfies the property

 $\det(\Phi(M)) = \det(M) \ (M \in \mathbb{M}_n)$

if and only if there are invertible matrices $P, Q \in \mathbb{M}_n$ with det(PQ) = 1 such that either

 $\Phi(M) = PMQ \ (M \in \mathbb{M}_n)$

or

 $\Phi(M) = PM^tQ \ (M \in \mathbb{M}_n),$

Theorem (G. Frobenius (1897))

Let $n \in \mathbb{N}$. A linear map $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$ satisfies the property

 $\det(\Phi(M)) = \det(M) \ (M \in \mathbb{M}_n)$

if and only if there are invertible matrices $P, Q \in \mathbb{M}_n$ with det(PQ) = 1 such that either

$$\Phi(M) = PMQ \ (M \in \mathbb{M}_n)$$

or

$$\Phi(M) = PM^tQ \ (M \in \mathbb{M}_n),$$

if and only if $\Phi = W\Psi$ for some automorphism or anti-automorphism Ψ of the Banach algebra \mathbb{M}_n and some invertible matrix $W \in \mathbb{M}_n$ with det W = 1.

Theorem (J. Dieudonné (1949))

Let $n \in \mathbb{N}$. A bijective linear map $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$ satisfies the property

$$M \in \mathbb{M}_n, \, \det(M) = 0 \, \Rightarrow \, \det(\Phi(M)) = 0$$

if and only if there are invertible matrices $P, Q \in \mathbb{M}_n$ such that either

 $\Phi(M) = PMQ \ (M \in \mathbb{M}_n)$

or

$$\Phi(M) = PM^tQ \ (M \in \mathbb{M}_n),$$

Theorem (J. Dieudonné (1949))

Let $n \in \mathbb{N}$. A bijective linear map $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$ satisfies the property

$$M \in \mathbb{M}_n, \, \det(M) = 0 \, \Rightarrow \, \det(\Phi(M)) = 0$$

if and only if there are invertible matrices $P, Q \in \mathbb{M}_n$ such that either

 $\Phi(M) = PMQ \ (M \in \mathbb{M}_n)$

or

$$\Phi(M) = PM^tQ \ (M \in \mathbb{M}_n),$$

if and only if $\Phi = W\Psi$ for some automorphism or anti-automorphism Ψ of the Banach algebra \mathbb{M}_n and some invertible matrix $W \in \mathbb{M}_n$.

Theorem (M. Marcus and R. Purves (1959))

Let $n \in \mathbb{N}$. A linear map $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$ satisfies the property

 $sp(\Phi(M)) = sp(M) \ (M \in \mathbb{M}_n)$

if and only if there is an invertible matrix $P \in M_n$ such that either

$$\Phi(M) = PMP^{-1} \ (M \in \mathbb{M}_n)$$

or

$$\Phi(M) = PM^t P^{-1} \ (M \in \mathbb{M}_n),$$

Theorem (M. Marcus and R. Purves (1959))

Let $n \in \mathbb{N}$. A linear map $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$ satisfies the property

 $sp(\Phi(M)) = sp(M) \ (M \in \mathbb{M}_n)$

if and only if there is an invertible matrix $P \in \mathbb{M}_n$ such that either

$$\Phi(M) = PMP^{-1} \ (M \in \mathbb{M}_n)$$

or

$$\Phi(M) = PM^t P^{-1} \ (M \in \mathbb{M}_n),$$

if and only if Φ is either an automorphism or an anti-automorphism of the Banach algebra \mathbb{M}_n .

A. R. Villena (Granada)

Image: Image:

Theorem (A. M. Gleason (1967), J. P. Kahane and W. Żelazko (1968))

Let A be a complex Banach algebra and let $\varphi \colon A \to \mathbb{C}$ be a linear functional. Then φ is multiplicative (and nonzero) if (and only if)

 $\varphi(a) \in sp(a) \ (a \in A).$

Kaplansky's problem

A. R. Villena (Granada)

Identify the multiplicative linear maps among all linear maps, between complex Banach algebras *A* and *B*, in terms of spectra.

Identify the multiplicative linear maps among all linear maps, between complex Banach algebras *A* and *B*, in terms of spectra.

Kaplansky suggested to translate property

Gleason-Kahane-Żelazko condition

 $\varphi(a) \in \operatorname{sp}(a) \ (a \in A),$

for a linear map $\Phi: A \rightarrow B$, into the property

Identify the multiplicative linear maps among all linear maps, between complex Banach algebras *A* and *B*, in terms of spectra.

Kaplansky suggested to translate property

Gleason-Kahane-Żelazko condition

 $\varphi(a) \in \operatorname{sp}(a) \ (a \in A),$

for a linear map $\Phi: A \rightarrow B$, into the property

Shrinking the spectrum

$$\operatorname{sp}(\Phi(a)) \subset \operatorname{sp}(a) \ (a \in A).$$

Let A and B be complex Banach algebras and let $\Phi\colon A\to B$ be a linear map with the property that

 $\operatorname{sp}(\Phi(a)) \subset \operatorname{sp}(a) \ (a \in A).$

Let A and B be complex Banach algebras and let $\Phi\colon A\to B$ be a linear map with the property that

$${\sf sp}ig(\Phi({\it a})ig) \subset {\sf sp}({\it a}) \ ({\it a} \in {\it A}).$$

Is it true that Φ is a Jordan homomorphism, i.e.

$$\Phi(a^2) = \Phi(a)^2 \ (a \in A)$$
?

Let A and B be complex Banach algebras and let $\Phi : A \to B$ be a linear map with the property that

$${\sf sp}ig(\Phi({\it a})ig) \subset {\sf sp}({\it a}) \;\; ({\it a} \in {\it A}).$$

Is it true that Φ is a Jordan homomorphism, i.e.

$$\Phi(a^2) = \Phi(a)^2 \ (a \in A) ?$$

The question is still open even for C^* -algebras in which case it is known as the Harris-Kadison conjecture (1996).

Let A and B be complex Banach algebras and let $\Phi : A \to B$ be a linear map with the property that

$${\sf sp}ig(\Phi({\it a})ig) \subset {\sf sp}({\it a}) \ ({\it a} \in {\it A}).$$

Is it true that Φ is a Jordan homomorphism, i.e.

$$\Phi(a^2) = \Phi(a)^2 \ (a \in A) ?$$

The question is still open even for C^* -algebras in which case it is known as the Harris-Kadison conjecture (1996).

B. Aupetit (2000)

Let *A* and *B* be semisimple complex Banach algebras and let $\Phi: A \rightarrow B$ be a surjective linear map with the property that

$$\operatorname{sp}(\Phi(a)) = \operatorname{sp}(a) \ (a \in A).$$

Is it true that Φ is a Jordan homomorphism?

Theorem (A. A. Jafarian and A. R. Sourour (1986))

Let X and Y be complex Banach spaces and let $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ be a surjective linear map with the property that

$$\operatorname{sp}(\Phi(T)) = \operatorname{sp}(T) \ (T \in \mathcal{B}(X)).$$

Then Φ has the form $\Phi(T) = STS^{-1}$ ($T \in \mathcal{B}(X)$) for some isomorphism $S: X \to Y$ or $\Phi(T) = RT^*R^{-1}$ ($T \in \mathcal{B}(Y)$) for some isomorphism $R: X^* \to Y$.

Theorem (A. A. Jafarian and A. R. Sourour (1986))

Let X and Y be complex Banach spaces and let $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ be a surjective linear map with the property that

 $\operatorname{sp}(\Phi(T)) = \operatorname{sp}(T) \ (T \in \mathcal{B}(X)).$

Then Φ has the form $\Phi(T) = STS^{-1}$ ($T \in \mathcal{B}(X)$) for some isomorphism $S: X \to Y$ or $\Phi(T) = RT^*R^{-1}$ ($T \in \mathcal{B}(Y)$) for some isomorphism $R: X^* \to Y$.

Theorem (A. R. Sourour (1996))

Let X and Y be Banach spaces, let A and B be unital standard operator algebras on X and Y, respectively, and let $\Phi: A \to B$ be a linear map. Then Φ has the form $\Phi(T) = STS^{-1}$ ($T \in A$) for some isomorphism $S: X \to Y$ or $\Phi(T) = RT^*R^{-1}$ ($T \in A$) for some isomorphism $R: X^* \to Y$ in either of the following cases:

• the map Φ is bijective and $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}(T)$ for each $T \in A$, or

3 the map Φ is surjective and $\operatorname{sp}(\Phi(T)) = \operatorname{sp}(T)$ for each $T \in A$.

Linear maps preserving some parts of the spectrum

- Ieft spectrum
- right spectrum
- approximate point spectrum
- surjectivity spectrum
- boundary of the spectrum

Linear maps preserving some parts of the spectrum

- Ieft spectrum
- right spectrum
- approximate point spectrum
- surjectivity spectrum
- boundary of the spectrum

Linear maps preserving some spectral quantities

- spectral radius
- essential spectral radius
- minimum modulus
- reduced minimum modulus

Part II

Introducing the problem

A. R. Villena (Granada)

Perturbed isomorphisms and spectral inclusions

Seminar 11/39

B. E. Johnson (1986) replaced

Gleason-Kahane-Żelazko condition

 $\varphi(a) \in \operatorname{sp}(a) \ (a \in A),$

with

B. E. Johnson (1986) replaced

Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \ (a \in A),$$

with

Approximate Gleason-Kahane-Żelazko condition

 $dist(\varphi(a), sp(a)) < \varepsilon \ (a \in A, \|a\| = 1)$

B. E. Johnson (1986) replaced

Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \ (a \in A),$$

with

Approximate Gleason-Kahane-Żelazko condition

$$\operatorname{dist}(\varphi(a),\operatorname{sp}(a)) < \varepsilon \ (a \in A, \|a\| = 1)$$

Theorem (B. E. Johnson (1986))

Let A be a commutative Banach algebra. Then for each $\varepsilon > 0$ there is $\delta > 0$ such that if $\varphi : A \to \mathbb{C}$ is a linear functional with

$$\operatorname{dist}(\varphi(a), \operatorname{sp}(a)) < \delta \ (a \in A, \|a\| = 1),$$

then

$$\sup\{|\varphi(ab) - \varphi(a)\varphi(b)|: a, b \in A, \|a\| = \|b\| = 1\} < \varepsilon.$$

AMNM algebras

A Banach algebra A is **AMNM** if for each $\varepsilon > 0$ there is $\delta > 0$ such that if φ is a linear functional on A with

$$\sup\{|\varphi(ab) - \varphi(a)\varphi(b)|: a, b \in A, \|a\| = \|b\| = 1\} < \delta,$$

then $\|\varphi - \psi\| < \varepsilon$ for some multiplicative linear functional ψ on A.

AMNM algebras

A Banach algebra A is **AMNM** if for each $\varepsilon > 0$ there is $\delta > 0$ such that if φ is a linear functional on A with

$$\sup\{|\varphi(ab) - \varphi(a)\varphi(b)|: a, b \in A, \|a\| = \|b\| = 1\} < \delta,$$

then $\|\varphi - \psi\| < \varepsilon$ for some multiplicative linear functional ψ on A.

Examples

- **O** B. E. Johnson (1986): $C_0(\Omega)$ for each locally compact Hausdorff space Ω , $L^{1}(G)$ for each locally compact abelian group $G, \ell^{1}(\mathbb{Z}^{+}), L^{1}(]0, +\infty[),$ $A(\mathbb{D}).$
- 2 R. A. J. Howey (2003): $C^n([0, 1])$ for each $n \in \mathbb{N}$ and certain Banach algebras of Lipschitz functions.
- B. E. Johnson (1988): all finite-dimensional and all amenable Banach algebras. In particular, the group algebra $L^1(G)$ for each amenable group.

Properly infinite unital Banach algebras. In particular $\mathcal{B}(X)$ for each Banach space X which contains a complemented subspace isomorphic to X A A. R. Villena (Granada)

A. R. Villena (Granada)

イロト イヨト イヨト イヨト

- Identify the approximately multiplicative linear maps among all linear maps, between complex Banach algebras A and B, in terms of spectra.
- Identify the perturbed multiplicative linear maps among all linear maps, between complex Banach algebras A and B, in terms of spectra.

Part III

Celebrities from this pattern of thinking

A. R. Villena (Granada)

Perturbed isomorphisms and spectral inclusions

Seminar 15 / 39

Replacing the spectra: the pseudospectra

Replacing the spectra: the pseudospectra

ε -pseudospectrum of $a \in A$

$$\operatorname{sp}_{\varepsilon}(a) = \left\{ z \in \mathbb{C} \colon \left\| (a - z\mathbf{1})^{-1} \right\| > \varepsilon^{-1} \right\} \quad (\varepsilon > 0)$$
Replacing the spectra: the pseudospectra

ε -pseudospectrum of $a \in A$

$$\operatorname{sp}_{\varepsilon}(a) = \left\{ z \in \mathbb{C} \colon \left\| (a - z\mathbf{1})^{-1} \right\| > \varepsilon^{-1} \right\} \quad (\varepsilon > 0)$$

Applications

- atmospheric science
- control theory
- ecology
- hydrodynamic stability
- Iasers
- magnetohydrodynamics
- Markov chains
- non-hermitian quantum mechanics
- numerical solutions of odes/pdes
- rounding error analysis

For a linear functional $\varphi \colon A \to \mathbb{C}$.

For a linear functional $\varphi \colon A \to \mathbb{C}$.

Gleason-Kahane-Żelazko condition

 $\varphi(a) \in \operatorname{sp}(a) \ (a \in A).$

For a linear functional $\varphi \colon A \to \mathbb{C}$.

Gleason-Kahane-Żelazko condition

 $\varphi(a) \in \operatorname{sp}(a) \ (a \in A).$

Johnson condition

 $dist(\varphi(a), sp(a)) < \varepsilon \ (a \in A, ||a|| = 1).$

For a linear functional $\varphi \colon A \to \mathbb{C}$.

Gleason-Kahane-Żelazko condition

 $\varphi(a) \in \operatorname{sp}(a) \ (a \in A).$

Johnson condition

$$dist(\varphi(a), sp(a)) < \varepsilon \ (a \in A, ||a|| = 1).$$

Our condition

$$\varphi(a) \in \operatorname{sp}_{\varepsilon}(a) \ (a \in A, \|a\| = 1).$$

For a linear map $\varphi \colon A \to B$.

A. R. Villena (Granada)

For a linear map $\varphi \colon A \to B$.

Kaplansky (shrinking) condition

 $\operatorname{sp}(\Phi(a))\subset \operatorname{sp}(a) \ (a\in A).$

For a linear map $\varphi \colon A \to B$.

Kaplansky (shrinking) condition

 $\operatorname{sp}(\Phi(a))\subset \operatorname{sp}(a) \ (a\in A).$

Approximate shrinking condition

 $\operatorname{sp}(\Phi(a)) \subset \operatorname{sp}_{\varepsilon}(a) \ (a \in A, \ \|a\| = 1).$

For a linear map $\varphi \colon A \to B$.

Kaplansky (shrinking) condition

 $\operatorname{sp}(\Phi(a))\subset \operatorname{sp}(a) \ (a\in A).$

Approximate shrinking condition

 $\operatorname{sp}(\Phi(a)) \subset \operatorname{sp}_{\varepsilon}(a) \ (a \in A, \ \|a\| = 1).$

Aupetit (preserving) condition

 $\operatorname{sp}(\Phi(a)) = \operatorname{sp}(a) \ (a \in A).$

イロト イヨト イヨト イヨト

For a linear map $\varphi \colon A \to B$.

Kaplansky (shrinking) condition

 $\operatorname{sp}(\Phi(a))\subset \operatorname{sp}(a) \ (a\in A).$

Approximate shrinking condition

$$\operatorname{sp}(\Phi(a)) \subset \operatorname{sp}_{\varepsilon}(a) \ (a \in A, \ \|a\| = 1).$$

Aupetit (preserving) condition

$$\operatorname{sp}(\Phi(a)) = \operatorname{sp}(a) \ (a \in A).$$

Approximate preserving condition

$$\operatorname{dist}_{\mathsf{H}}(\operatorname{sp}(\Phi(a)),\operatorname{sp}(a)) < \varepsilon \ (a \in A, \|a\| = 1).$$

A. R. Villena (Granada)

Let *A* and *B* be Banach algebras and let $\Phi : A \rightarrow B$ be a linear map.

Let A and B be Banach algebras and let $\Phi: A \rightarrow B$ be a linear map.

Multiplicativity of Φ

 $\operatorname{mult}(\Phi) = \sup \left\{ \|\Phi(ab) - \Phi(a)\Phi(b)\|: \ a, b \in A, \ \|a\| = \|b\| = 1 \right\}.$

Let A and B be Banach algebras and let $\Phi: A \rightarrow B$ be a linear map.

Multiplicativity of Φ

 $\operatorname{mult}(\Phi) = \sup \left\{ \|\Phi(ab) - \Phi(a)\Phi(b)\|: \ a, b \in A, \ \|a\| = \|b\| = 1 \right\}.$

Anti-multiplicativity of Φ

amult(Φ) = sup { $\|\Phi(ab) - \Phi(b)\Phi(a)\|$: $a, b \in A$, $\|a\| = \|b\| = 1$ }.

Let A and B be Banach algebras and let $\Phi: A \rightarrow B$ be a linear map.

Multiplicativity of Φ

 $\operatorname{mult}(\Phi) = \sup \left\{ \|\Phi(ab) - \Phi(a)\Phi(b)\|: \ a, b \in A, \ \|a\| = \|b\| = 1 \right\}.$

Anti-multiplicativity of Φ

amult $(\Phi) = \sup \{ \|\Phi(ab) - \Phi(b)\Phi(a)\| : a, b \in A, \|a\| = \|b\| = 1 \}.$

 Φ is a homomorphism \Leftrightarrow mult(Φ) = 0

 Φ is an anti-homomorphism \Leftrightarrow amult(Φ) = 0.

Let A and B be Banach algebras and let $\Phi: A \rightarrow B$ be a linear map.

Multiplicativity of Φ

 $\operatorname{mult}(\Phi) = \sup \left\{ \|\Phi(ab) - \Phi(a)\Phi(b)\|: \ a, b \in A, \ \|a\| = \|b\| = 1 \right\}.$

Anti-multiplicativity of Φ

 $\operatorname{amult}(\Phi) = \sup \{ \|\Phi(ab) - \Phi(b)\Phi(a)\| : a, b \in A, \|a\| = \|b\| = 1 \}.$

 Φ is a homomorphism \Leftrightarrow mult(Φ) = 0

 Φ is an anti-homomorphism \Leftrightarrow amult(Φ) = 0.

Standard problem

Determine whether mult(Φ) being small implies dist(Φ , Hom(A, B)) being small. Similar question for amult(Φ).

A. R. Villena (Granada)

Part IV

Our results

A. R. Villena (Granada)

Perturbed isomorphisms and spectral inclusions

Image: Image:

Seminar 20 / 39

Theorem

Let A be a unital Banach algebra. Then the following assertions hold.

For each ε, ν > 0 there is δ > 0 such that if φ is a linear functional on A with

 $\varphi(a) \in \operatorname{sp}_{\delta}(a) \ (a \in A, \|a\| = 1),$

then $\operatorname{mult}(\varphi) < \varepsilon$ and $\|\varphi\| > \nu$.

For each ε, ν > 0 there is δ > 0 such that if φ is a linear functional on A with mult(φ) < δ and ||φ|| > ν, then

$$\varphi(a) \in \operatorname{sp}_{\varepsilon}(a) \ (a \in A, \|a\| = 1).$$

Maps approximately shrinking the spectrum

Maps approximately shrinking the spectrum

Theorem

Let X and Y be superreflexive Banach spaces. Then the following assertions hold.

For each K, ε > 0 there is δ > 0 such that if Φ: B(X) → B(Y) is a bijective linear map with

 $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T) \ (T \in \mathcal{B}(X), \|T\| = 1)$

and $\|\Phi\|, \|\Phi^{-1}\| < K$, then

 $\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} < \varepsilon.$

For each K, ε > 0 there is δ > 0 such that if Φ: B(X) → B(Y) is a bijective linear map with min{mult(Φ), amult(Φ)} < δ and ||Φ||, ||Φ⁻¹|| < K, then</p>

 $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$

Question

Is it possible to remove the superreflexivity from the spaces X and Y in the theorem? Which conditions on the Banach spaces X and Y imply that the theorem still work?

Theorem

Let H be a separable Hilbert space. Then the following assertions hold.

For each K, ε > 0 there is δ > 0 such that if Φ: B(H) → B(H) is a bijective linear map with

 $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T) \ (T \in \mathcal{B}(H), \|T\| = 1)$

and $\|\Phi\|, \|\Phi^{-1}\| < K$, then

$$\|\Phi - \Psi\| < \varepsilon$$

for some automorphism or anti-automorphism $\Psi \colon \mathcal{B}(H) \to \mathcal{B}(H)$.

Por each K, ε > 0 there is δ > 0 such that if Φ: B(H) → B(H) is a continuous linear map with ||Φ|| < K and</p>

$$\|\Phi - \Psi\| < \delta$$

for some automorphism or anti-automorphism $\Psi \colon \mathcal{B}(H) \to \mathcal{B}(H)$, then

$$\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(H), \|T\| = 1).$$

Question

Does the theorem still work with *H* replaced by a superreflexive Banach space X? Which conditions on the Banach space X imply that the theorem remain valid with *H* replaced by X?

Maps approximately preserving the spectrum

Maps approximately preserving the spectrum

Theorem

Let X and Y be superreflexive Banach spaces. Then for each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ is a surjective linear map with

$$\operatorname{dist}_{\operatorname{H}}\!\left(\operatorname{sp}\!\left(\Phi(T)\right),\operatorname{sp}\!\left(T\right)\right) < \delta \ (T \in \mathcal{B}(X), \|T\| = 1),$$

 $\kappa(\Phi) > k$, and $\|\Phi\| < K$, then

 $\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} < \varepsilon.$

The surjectivity modulus of $\Phi \in \mathcal{B}(\mathfrak{X}, \mathfrak{Y})$ is defined by

$$\kappa(T) = \sup \left\{ \varrho \geq \mathsf{0} \colon \ \varrho \mathbb{B}_{\mathfrak{Y}} \subset \Phi(\mathbb{B}_{\mathfrak{X}}) \right\}.$$

Maps approximately preserving the spectrum

Theorem

Let X and Y be superreflexive Banach spaces. Then for each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ is a surjective linear map with

$$\operatorname{dist}_{\operatorname{H}}\!\left(\operatorname{sp}\!\left(\Phi(T)\right),\operatorname{sp}\!\left(T\right)\right) < \delta \ (T \in \mathcal{B}(X), \|T\| = 1),$$

 $\kappa(\Phi) > k$, and $\|\Phi\| < K$, then

 $\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} < \varepsilon.$

The surjectivity modulus of $\Phi \in \mathcal{B}(\mathfrak{X}, \mathfrak{Y})$ is defined by

$$\kappa(T) = \sup \left\{ \varrho \geq \mathbf{0} \colon \ \varrho \mathbb{B}_{\mathfrak{Y}} \subset \Phi(\mathbb{B}_{\mathfrak{X}}) \right\}.$$

Question

Is it possible to remove the superreflexivity from the spaces X and Y? Which conditions on the Banach spaces X and Y imply that the theorem still work?

A. R. Villena (Granada)

Theorem

Let H be a separable Hilbert space. Then for each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{B}(H) \to \mathcal{B}(H)$ is a surjective linear map with

$$\operatorname{dist}_{\mathrm{H}}\left(\operatorname{sp}(\Phi(T)),\operatorname{sp}(T)\right) < \delta \ (T \in \mathcal{B}(H), \|T\| = 1),$$

 $\kappa(\Phi) > k$, and $\|\Phi\| < K$, then

$$\|\Phi - \Psi\| < \varepsilon$$

for some automorphism or anti-automorphism $\Psi \colon \mathcal{B}(H) \to \mathcal{B}(H)$.

Theorem

Let H be a separable Hilbert space. Then for each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi : \mathcal{B}(H) \to \mathcal{B}(H)$ is a surjective linear map with

$$\operatorname{dist}_{\operatorname{H}}\left(\operatorname{sp}(\Phi(T)),\operatorname{sp}(T)\right) < \delta \ (T \in \mathcal{B}(H), \|T\| = 1),$$

 $\kappa(\Phi) > k$, and $\|\Phi\| < K$, then

$$\|\Phi - \Psi\| < \varepsilon$$

for some automorphism or anti-automorphism $\Psi \colon \mathcal{B}(H) \to \mathcal{B}(H)$.

Question

Does the theorem still work with H replaced by a superreflexive Banach space X? Which conditions on the Banach space X imply that the theorem remain valid with H replaced by X?

Part V

Method of proof

A. R. Villena (Granada)

Perturbed isomorphisms and spectral inclusions

Seminar 28 / 39

The main tool: ultrapowers

Let \mathcal{U} be a free ultrafilter on \mathbb{N} and let \mathfrak{X} be a Banach space. Then the **ultrapower** of \mathfrak{X} with respect to \mathcal{U} is the Banach space

 $\mathfrak{X}^{\mathcal{U}} = \ell^{\infty}(\mathfrak{X})/\mathfrak{N}_{\mathcal{U}},$

where $\mathfrak{N}_{\mathcal{U}} := \{x \in \ell^{\infty}(\mathfrak{X}): \| u_{\mathcal{U}} \| x_n \| = 0\}$. The norm on $\mathfrak{X}^{\mathcal{U}}$ is given by

$$\|\mathbf{x}\| = \lim_{\mathcal{U}} \|x_n\| \ (\mathbf{x} = (x_n) \in \mathfrak{X}^{\mathcal{U}}).$$

The main tool: ultrapowers

Let \mathcal{U} be a free ultrafilter on \mathbb{N} and let \mathfrak{X} be a Banach space. Then the **ultrapower** of \mathfrak{X} with respect to \mathcal{U} is the Banach space

 $\mathfrak{X}^{\mathcal{U}} = \ell^{\infty}(\mathfrak{X})/\mathfrak{N}_{\mathcal{U}},$

where $\mathfrak{N}_{\mathcal{U}} := \{x \in \ell^{\infty}(\mathfrak{X}) : \lim_{\mathcal{U}} \|x_n\| = 0\}$. The norm on $\mathfrak{X}^{\mathcal{U}}$ is given by

$$\|\mathbf{x}\| = \lim_{\mathcal{U}} \|x_n\| \ (\mathbf{x} = (x_n) \in \mathfrak{X}^{\mathcal{U}}).$$

There is an isometric linear map $\mathcal{B}(\mathfrak{X},\mathfrak{Y})^{\mathcal{U}} \to \mathcal{B}(\mathfrak{X}^{\mathcal{U}},\mathfrak{Y}^{\mathcal{U}})$ which is defined by

$$\mathbf{T}(\mathbf{x}) = (T_n(x_n)) \quad (\mathbf{T} = (T_n) \in \mathcal{B}(\mathfrak{X}, \mathfrak{Y})^{\mathcal{U}}, \mathbf{x} = (x_n) \in \mathfrak{X}^{\mathcal{U}}).$$

The main tool: ultrapowers

Let \mathcal{U} be a free ultrafilter on \mathbb{N} and let \mathfrak{X} be a Banach space. Then the **ultrapower** of \mathfrak{X} with respect to \mathcal{U} is the Banach space

 $\mathfrak{X}^{\mathcal{U}} = \ell^{\infty}(\mathfrak{X})/\mathfrak{N}_{\mathcal{U}},$

where $\mathfrak{N}_{\mathcal{U}} := \{x \in \ell^{\infty}(\mathfrak{X}) : \lim_{\mathcal{U}} \|x_n\| = 0\}$. The norm on $\mathfrak{X}^{\mathcal{U}}$ is given by

$$\|\mathbf{x}\| = \lim_{\mathcal{U}} \|x_n\| \ (\mathbf{x} = (x_n) \in \mathfrak{X}^{\mathcal{U}}).$$

There is an isometric linear map $\mathcal{B}(\mathfrak{X},\mathfrak{Y})^{\mathcal{U}} \to \mathcal{B}(\mathfrak{X}^{\mathcal{U}},\mathfrak{Y}^{\mathcal{U}})$ which is defined by

$$\mathbf{T}(\mathbf{x}) = (T_n(x_n)) \quad (\mathbf{T} = (T_n) \in \mathcal{B}(\mathfrak{X}, \mathfrak{Y})^{\mathcal{U}}, \mathbf{x} = (x_n) \in \mathfrak{X}^{\mathcal{U}}).$$

There is a canonical map $(\mathfrak{X}^*)^{\mathcal{U}} \to (\mathfrak{X}^{\mathcal{U}})^*$ given by

$$\langle \mathbf{f}, \mathbf{x} \rangle = \lim_{\mathcal{U}} \langle f_n, x_n \rangle \ (\mathbf{f} = (f_n) \in (\mathfrak{X}^*)^{\mathcal{U}}, \mathbf{x} = (x_n) \in \mathfrak{X}^{\mathcal{U}}).$$

This map is an isometry, and so we identify $(\mathfrak{X}^*)^{\mathcal{U}}$ with a closed subspace of $(\mathfrak{X}^{\mathcal{U}})^*$. It is known that $(\mathfrak{X}^*)^{\mathcal{U}} = (\mathfrak{X}^{\mathcal{U}})^*$ if and only if the Banach space \mathfrak{X} is superreflexive.

Suppose the assertion fails to be true. Then there exist $\tau > 0$ and a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ with the properties that

$$\begin{split} \mathsf{sp}\big(\Phi_n(T)\big) \subset \mathsf{sp}_{1/n}(T) \ (T \in \mathcal{B}(X), \|T\| = 1), \\ \|\Phi_n\|, \|\Phi_n^{-1}\| < K, \\ \mathsf{mult}(\Phi_n), \mathsf{amult}(\Phi_n) \geq \tau. \end{split}$$

Suppose the assertion fails to be true. Then there exist $\tau > 0$ and a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ with the properties that

$$sp(\Phi_n(T)) \subset sp_{1/n}(T) \quad (T \in \mathcal{B}(X), ||T|| = 1),$$
$$\|\Phi_n\|, \|\Phi_n^{-1}\| < K,$$
$$mult(\Phi_n), amult(\Phi_n) \ge \tau.$$

Then the map $\Phi = (\Phi_n) : \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) \to \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}})$ is a continuous bijective linear map.

Suppose the assertion fails to be true. Then there exist $\tau > 0$ and a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ with the properties that

$$sp(\Phi_n(T)) \subset sp_{1/n}(T) \quad (T \in \mathcal{B}(X), ||T|| = 1),$$
$$\|\Phi_n\|, \|\Phi_n^{-1}\| < K,$$
$$mult(\Phi_n), amult(\Phi_n) \ge \tau.$$

Then the map $\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) \to \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}})$ is a continuous bijective linear map.

$$\operatorname{sp}(\Phi(\mathbf{T})) \subset \operatorname{sp}(\mathbf{T}) \ (\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}).$$

Suppose the assertion fails to be true. Then there exist $\tau > 0$ and a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ with the properties that

$$sp(\Phi_n(T)) \subset sp_{1/n}(T) \quad (T \in \mathcal{B}(X), ||T|| = 1),$$
$$\|\Phi_n\|, \|\Phi_n^{-1}\| < K,$$
$$mult(\Phi_n), amult(\Phi_n) \ge \tau.$$

Then the map $\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) \to \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}})$ is a continuous bijective linear map.

$$\operatorname{sp}(\Phi(\mathbf{T})) \subset \operatorname{sp}(\mathbf{T}) \ (\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}).$$

 $\mathcal{B}(X)^{\mathcal{U}}$ and $\mathcal{B}(Y)^{\mathcal{U}}$ are standard operator algebras on $X^{\mathcal{U}}$ and $Y^{\mathcal{U}}$.
For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ is a bijective linear map with $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T)$ $(T \in \mathcal{B}(X), ||T|| = 1)$ and $||\Phi||, ||\Phi^{-1}|| < K$, then $\min\{\operatorname{mult}(\Phi), \operatorname{amult}(\Phi)\} < \varepsilon$.

Suppose the assertion fails to be true. Then there exist $\tau > 0$ and a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ with the properties that

$$sp(\Phi_n(T)) \subset sp_{1/n}(T) \quad (T \in \mathcal{B}(X), ||T|| = 1),$$
$$\|\Phi_n\|, \|\Phi_n^{-1}\| < K,$$
$$mult(\Phi_n), amult(\Phi_n) \ge \tau.$$

Then the map $\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) \to \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}})$ is a continuous bijective linear map.

$$\operatorname{sp}(\Phi(\mathbf{T})) \subset \operatorname{sp}(\mathbf{T}) \ (\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}).$$

 $\mathcal{B}(X)^{\mathcal{U}}$ and $\mathcal{B}(Y)^{\mathcal{U}}$ are standard operator algebras on $X^{\mathcal{U}}$ and $Y^{\mathcal{U}}$. Φ is either a homomorphism or an anti-homomorphism.

$$\tau \leq \lim_{\mathcal{U}} \min\{ \operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \} =$$

 $\min\{\lim_{\mathcal{U}} \operatorname{mult}(\Phi_n), \lim_{\mathcal{U}} \operatorname{mult}(\Phi_n)\} = \min\{\operatorname{mult}(\Phi), \operatorname{mult}(\Phi)\} = 0.$

For each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi: \mathcal{B}(X) \to \mathcal{B}(Y)$ is a surjective linear map with $\operatorname{dist}_{H}(\operatorname{sp}(\Phi(T)), \operatorname{sp}(T)) < \delta$ $(T \in \mathcal{B}(X), ||T|| = 1), \kappa(\Phi) > k$, and $||\Phi|| < K$, then $\min\{\operatorname{mult}(\Phi), \operatorname{anult}(\Phi)\} < \varepsilon$.

For each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$ is a surjective linear map with $\operatorname{dist}_{H}(\operatorname{sp}(\Phi(T)), \operatorname{sp}(T)) < \delta$ $(T \in \mathcal{B}(X), ||T|| = 1), \kappa(\Phi) > k$, and $||\Phi|| < K$, then $\min\{\operatorname{mult}(\Phi), \operatorname{amult}(\Phi)\} < \varepsilon$.

Suppose the assertion fails to be true. Then there exist $\tau > 0$ and a sequence (Φ_n) of surjective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ with the properties that

$$\sup_{\|\mathcal{T}\|} \text{dist}_{H} \Big(\text{sp} \big(\Phi(\mathcal{T}) \big), \text{sp}(\mathcal{T}) \Big) \to \mathbf{0},$$

 $\kappa(\Phi_n) > k, \|\Phi_n\| < K,$

 $\operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \geq \tau.$

Then the map $\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) \to \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}})$ is a continuous surjective linear map.

$$\operatorname{sp}(\Phi(\mathbf{T})) = \operatorname{sp}(\mathbf{T}) \ (\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}).$$

 $\mathcal{B}(X)^{\mathcal{U}}$ and $\mathcal{B}(Y)^{\mathcal{U}}$ are standard operator algebras on $X^{\mathcal{U}}$ and $Y^{\mathcal{U}}$. Φ is either a homomorphism or an anti-homomorphism.

$$\tau \leq \lim_{\mathcal{U}} \min \{ \operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \} =$$

 $\min\{\lim_{\mathcal{U}} \operatorname{mult}(\Phi_n), \lim_{\mathcal{U}} \operatorname{amult}(\Phi_n)\} = \min\{\operatorname{mult}(\Phi), \operatorname{amult}(\Phi)\} = 0.$

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi: \mathcal{B}(H) \to \mathcal{B}(H)$ is a bijective linear map with $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T)$ $(T \in \mathcal{B}(H), ||T|| = 1)$ and $||\Phi||, ||\Phi^{-1}|| < K$, then $||\Phi - \Psi|| < \varepsilon$ for some automorphism or anti-automorphism $\Psi: \mathcal{B}(H) \to \mathcal{B}(H)$.

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi: \mathcal{B}(H) \to \mathcal{B}(H)$ is a bijective linear map with $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T)$ $(T \in \mathcal{B}(H), ||T|| = 1)$ and $||\Phi||, ||\Phi^{-1}|| < K$, then $||\Phi - \Psi|| < \varepsilon$ for some automorphism or anti-automorphism $\Psi: \mathcal{B}(H) \to \mathcal{B}(H)$.

Let *A* and *B* be Banach algebras and let $\Phi \in \mathcal{B}(A, B)$ such that $\|\Phi - \Psi\| < \varepsilon$ for some continuous homomorphism or anti-homomorphism $\Psi : A \to B$. Then it is straightforward to check that

 $\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} \leq (1 + \varepsilon + 2\|\Phi\|)\varepsilon.$

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi: \mathcal{B}(H) \to \mathcal{B}(H)$ is a bijective linear map with $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T)$ $(T \in \mathcal{B}(H), ||T|| = 1)$ and $||\Phi||, ||\Phi^{-1}|| < K$, then $||\Phi - \Psi|| < \varepsilon$ for some automorphism or anti-automorphism $\Psi: \mathcal{B}(H) \to \mathcal{B}(H)$.

Let *A* and *B* be Banach algebras and let $\Phi \in \mathcal{B}(A, B)$ such that $\|\Phi - \Psi\| < \varepsilon$ for some continuous homomorphism or anti-homomorphism $\Psi : A \to B$. Then it is straightforward to check that

$$\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} \leq (1 + \varepsilon + 2\|\Phi\|)\varepsilon.$$

The **AMNM** problem is concerned with the question of whether the constant $\min\{\text{mult}(\Phi), \text{amult}(\Phi)\}$ being small implies Φ is near an homomorphism or anti-homomorphism $\Psi: A \to B$:

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi : \mathcal{B}(H) \to \mathcal{B}(H)$ is a bijective linear map with $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T)$ $(T \in \mathcal{B}(H), ||T|| = 1)$ and $||\Phi||, ||\Phi^{-1}|| < K$, then $||\Phi - \Psi|| < \varepsilon$ for some automorphism or anti-automorphism $\Psi : \mathcal{B}(H) \to \mathcal{B}(H)$.

Let *A* and *B* be Banach algebras and let $\Phi \in \mathcal{B}(A, B)$ such that $\|\Phi - \Psi\| < \varepsilon$ for some continuous homomorphism or anti-homomorphism $\Psi : A \to B$. Then it is straightforward to check that

$$\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} \leq (1 + \varepsilon + 2\|\Phi\|)\varepsilon.$$

The **AMNM** problem is concerned with the question of whether the constant $\min\{\text{mult}(\Phi), \text{amult}(\Phi)\}$ being small implies Φ is near an homomorphism or anti-homomorphism $\Psi: A \to B$:

for each $K, \varepsilon > 0$ is there $\delta > 0$ such that if $\Phi \in \mathcal{B}(A, B)$ with $\|\Phi\| < K$ and $\min\{ \text{mult}(\Phi), \text{amult}(\Phi) \} < \delta$ then $\|\Phi - \Psi\| < \varepsilon$ for some continuous homomorphism or anti-homomorphism $\Psi : A \to B$?

Examples

The answer is afirmative in any of the following cases.

- The Banach algebras A and B are finite-dimensional.
- The Banach algebra A is finite-dimensional and semisimple and B is any Banach algebra.
- The Banach algebra *A* is amenable and *B* is a two-sided ideal of a dual Banach algebra *C* in the sense that there is a Banach *C*-bimodule C_* so that *C* is isomorphic as a *C*-bimodule with $(C_*)^*$. As a matter of fact, this applies to the pairs:
 - (*L*¹(*G*₁), *M*(*G*₂)) and (*L*¹(*G*₁), *L*¹(*G*₂)) for each amenable group *G*₁ and each locally compact group *G*₂,
 - $(\mathcal{K}(H_1), \mathcal{B}(H_2))$ and $(\mathcal{K}(H_1), \mathcal{K}(H_2))$ for all Hilbert spaces H_1 and H_2 .
- ($\mathcal{B}(H), \mathcal{B}(H)$) for each separable Hilbert space *H*.

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$ is a bijective linear map with min $\{mult(\Phi), amult(\Phi)\} < \delta$ and $\|\Phi\|, \|\Phi^{-1}\| < K$, then $sp(\Phi(T)) \subset sp_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ is a bijective linear map with min $\{ \text{mult}(\Phi), \text{amult}(\Phi) \} < \delta$ and $\|\Phi\|, \|\Phi^{-1}\| < K$, then $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$

Suppose the assertion is false. Then there exist $\tau > 0$, a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$, and (T_n) in $\mathcal{B}(X)$ such that

$$\begin{split} \lim\min\{ \min\{ \operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \} &= 0, \\ \|\Phi_n\|, \|\Phi_n^{-1}\| < K, \\ \|T_n\| &= 1, \\ \operatorname{sp}(\Phi_n(T_n)) \not\subset \operatorname{sp}_\tau(T_n) \end{split}$$

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$ is a bijective linear map with min $\{ \text{mult}(\Phi), \text{amult}(\Phi) \} < \delta$ and $\|\Phi\|, \|\Phi^{-1}\| < K$, then $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$

Suppose the assertion is false. Then there exist $\tau > 0$, a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$, and (T_n) in $\mathcal{B}(X)$ such that

$$\begin{split} \lim\min\{ & \min\{ \operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \} = 0, \\ & \|\Phi_n\|, \|\Phi_n^{-1}\| < K, \\ & \|T_n\| = 1, \\ & \operatorname{sp}(\Phi_n(T_n)) \not\subset \operatorname{sp}_\tau(T_n) \end{split}$$

We now consider the bijective continuous linear map

$$\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) o \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}}).$$

and $\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}$.

For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$ is a bijective linear map with min $\{ \text{mult}(\Phi), \text{amult}(\Phi) \} < \delta$ and $\|\Phi\|, \|\Phi^{-1}\| < K$, then $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$

Suppose the assertion is false. Then there exist $\tau > 0$, a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$, and (T_n) in $\mathcal{B}(X)$ such that

$$\begin{split} \lim\min\{ & \operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \} = 0, \\ & \|\Phi_n\|, \|\Phi_n^{-1}\| < K, \\ & \|T_n\| = 1, \\ & \operatorname{sp}(\Phi_n(T_n)) \not\subset \operatorname{sp}_\tau(T_n) \end{split}$$

We now consider the bijective continuous linear map

$$\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) \to \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}}).$$

and $\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}$. Φ is either an isomorphism or an anti-isomorphism. For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$ is a bijective linear map with min $\{ \text{mult}(\Phi), \text{amult}(\Phi) \} < \delta$ and $\|\Phi\|, \|\Phi^{-1}\| < K$, then $\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$

Suppose the assertion is false. Then there exist $\tau > 0$, a sequence (Φ_n) of bijective linear maps from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$, and (T_n) in $\mathcal{B}(X)$ such that

$$\begin{split} \lim\min\{ & \operatorname{mult}(\Phi_n), \operatorname{amult}(\Phi_n) \} = 0, \\ & \|\Phi_n\|, \|\Phi_n^{-1}\| < K, \\ & \|T_n\| = 1, \\ & \operatorname{sp}(\Phi_n(T_n)) \not\subset \operatorname{sp}_\tau(T_n) \end{split}$$

We now consider the bijective continuous linear map

$$\Phi = (\Phi_n) \colon \mathcal{B}(X)^{\mathcal{U}} \subset \mathcal{B}(X^{\mathcal{U}}) o \mathcal{B}(Y)^{\mathcal{U}} \subset \mathcal{B}(Y^{\mathcal{U}}).$$

and $\mathbf{T} = (T_n) \in \mathcal{B}(X)^{\mathcal{U}}$. Φ is either an isomorphism or an anti-isomorphism. Hence $\operatorname{sp}(\Phi(\mathbf{T})) = \operatorname{sp}(\mathbf{T})$ and this implies that for each $\varepsilon > 0$ there is $n \in \mathbb{N}$ with $\operatorname{sp}(\Phi_n(T_n)) \subset \operatorname{sp}_{\varepsilon}(T_n)$.

Part VI

Concluding remarks

A. R. Villena (Granada)

Perturbed isomorphisms and spectral inclusions

Seminar 35 / 39

Theorem

Let $A_1(X)$ and $A_2(Y)$ be unital standard operator algebras on superreflexive Banach spaces Banach spaces X and Y. Then the following assertions hold.

For each K, ε > 0 there is δ > 0 such that if Φ: A₁(X) → A₂(Y) is a bijective linear map with

$$\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T) \ (T \in \mathcal{A}_1(X), \|T\| = 1)$$

and $\|\Phi\|, \|\Phi^{-1}\| < K$, then

 $\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} < \varepsilon.$

So For each $K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi \colon \mathcal{A}_1(X) \to \mathcal{A}_2(Y)$ is a bijective linear map with $\min\{ \operatorname{mult}(\Phi), \operatorname{amult}(\Phi) \} < \delta$ and $\|\Phi\|, \|\Phi^{-1}\| < K$, then

$$\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{A}_1(X), \|T\| = 1).$$

Theorem

Let $A_1(X)$ and $A_2(Y)$ be unital standard operator algebras on superreflexive Banach spaces X and Y. Then for each $k, K, \varepsilon > 0$ there is $\delta > 0$ such that if $\Phi: A_1(X) \to A_2(Y)$ is a surjective linear map with

$$\operatorname{dist}_{\operatorname{H}}\left(\operatorname{sp}(\Phi(\mathcal{T})),\operatorname{sp}(\mathcal{T})\right) < \delta \ (\mathcal{T} \in \mathcal{A}_{1}(\mathcal{X}), \|\mathcal{T}\| = 1),$$

 $\kappa(\Phi) > k$, and $\|\Phi\| < K$, then

 $\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\} < \varepsilon.$

Question

Let $A_1(H)$ and $A_2(H)$ be unital standard operator algebras on a separable Hilbert space *H*. Is the pair $(A_1(H), A_2(H))$ AMNM?

Quantitative estimates

A. R. Villena (Granada)

Approximate Gleason-Kahane-Żelazko theorem

Approximate Gleason-Kahane-Żelazko theorem

Maps approximately shrinking/preserving the spectrum ?