Bounded sets in topological groups

Salvador Hernández

Universitat Jaume I
Castelló - Spain

The character of topological groups via Pontryagin duality

Joint work with C. Chis, M.V. Ferrer and B. Tsaban
1. Introduction

2. Duality of abelian groups

3. Bounded sets in topological groups

4. Main results
1. Introduction

2. Duality of abelian groups

Index
Index

1. Introduction

2. Duality of abelian groups

3. Bounded sets in topological groups
Index

1. Introduction
2. Duality of abelian groups
3. Bounded sets in topological groups
4. Main results
1. Introduction

2. Duality of abelian groups

3. Bounded sets in topological groups

4. Main results
Let X be a Tychonoff space. The *free abelian topological group* $A(X)$ over X is defined as the abelian topological group such that each continuous function from X into any abelian topological group H has a unique extension to a continuous homomorphism $\varphi : A(X) \longrightarrow H$.
Let X be a Tychonoff space. The **free abelian topological group** $A(X)$ over X is defined as the abelian topological group such that each continuous function from X into any abelian topological group H has a unique extension to a continuous homomorphism $\varphi : A(X) \rightarrow H$.

Theorem [Nickolas and Tkachenko]

Let X be a compact space. Then

$$\chi(A(X)) = \delta \cdot \text{cof}([w(X)]^\omega).$$
Let X be a Thychonoff space. The free abelian topological group $A(X)$ over X is defined as the abelian topological group such that each continuous function from X into any abelian topological group H has a unique extension to a continuous homomorphism $\varphi : A(X) \to H$.

Theorem [Nickolas and Tkachenko]

Let X be a compact space. Then

$$\chi(A(X)) = \mathfrak{d} \cdot \text{cof}([\text{w}(X)]^\omega).$$

The proof of this result uses elementary but very sophisticated topological arguments. In the sequel, we are going to look at this question having in mind Pontryagin duality.
Let G be a commutative locally-compact group. A character χ of G is a continuous homomorphism $\chi : G \to \mathbb{T}$ where \mathbb{T} is the multiplicative group of complex numbers of modulus 1.
Let G be a commutative locally-compact group. A character χ of G is a continuous homomorphism $\chi : G \rightarrow \mathbb{T}$ where \mathbb{T} is the multiplicative group of complex numbers of modulus 1.

The characters form a group \hat{G}, named dual group, which is given the topology of uniform convergence on compact subsets of G.

Theorem [Pontryagin-van Kampen]
The evaluation homomorphism \mathcal{E}_G is an isomorphism of topological groups.
Let G be a commutative locally-compact group. A character χ of G is a continuous homomorphism $\chi : G \to \mathbb{T}$ where \mathbb{T} is the multiplicative group of complex numbers of modulus 1.

The characters form a group \hat{G}, named dual group, which is given the topology of uniform convergence on compact subsets of G. It turns out that \hat{G} is locally compact and there is a canonical pairing

$$\langle , \rangle : \hat{G} \times G \to \mathbb{T},$$

and a canonical evaluation homomorphism

$$\mathcal{E}_G : G \to \hat{G}.$$
Let G be a commutative locally-compact group. A character χ of G is a continuous homomorphism $\chi : G \rightarrow \mathbb{T}$ where \mathbb{T} is the multiplicative group of complex numbers of modulus 1.

The characters form a group \hat{G}, named dual group, which is given the topology of uniform convergence on compact subsets of G. It turns out that \hat{G} is locally compact and there is a canonical pairing

$$\langle , \rangle : \hat{G} \times G \rightarrow \mathbb{T},$$

and a canonical evaluation homomorphism

$$\mathcal{E}_G : G \rightarrow \hat{G}.$$
The group G is compact if and only if the dual group \hat{G} is discrete.
The group G is compact if and only if the dual group \hat{G} is discrete.

We have

$$\hat{T} \cong \mathbb{Z}, \quad \hat{\mathbb{Z}} \cong T, \quad \hat{\mathbb{R}} \cong \mathbb{R}, \quad \widehat{\mathbb{Z}/n} \cong \mathbb{Z}/n.$$

(some groups are self dual, such as finite abelian groups or the additive group of the real numbers).
The group G is compact if and only if the dual group \hat{G} is discrete.

We have

$$\hat{T} \cong \mathbb{Z}, \hat{\mathbb{Z}} \cong T, \hat{\mathbb{R}} \cong \mathbb{R}, \widehat{(\mathbb{Z}/n)} \cong \mathbb{Z}/n.$$

(some groups are self dual, such as finite abelian groups or the additive group of the real numbers).

Pontryagin duality goes hand-in-hand with the theory of Fourier transform which I briefly describe here.

There is a positive measure dx on G called the Haar measure. It is the unique (up to scalar multiple) Borel measure which is invariant under translations.
Using it, we can define the spaces $L^1(G)$ and $L^2(G)$ of integrable and square integrable functions.
Using it, we can define the spaces $L^1(G)$ and $L^2(G)$ of integrable and square integrable functions. The *Fourier transform*

$$\mathcal{F} : L^1(G) \cap L^2(G) \longrightarrow L^2(\hat{G})$$

is defined as follows

$$(\mathcal{F}f)(\chi) = \int_{G} f(x) \langle \chi, x \rangle \, dx.$$
Using it, we can define the spaces $L^1(G)$ and $L^2(G)$ of integrable and square integrable functions.

The Fourier transform

$$\mathcal{F} : L^1(G) \cap L^2(G) \to L^2(\hat{G})$$

is defined as follows

$$(\mathcal{F} f)(\chi) = \int_G f(x) \langle \chi, x \rangle \, dx.$$

The set $L^1(G) \cap L^2(G)$ is a dense subspace of $L^2(G)$ and we have:

Theorem [Plancherel]

With correct normalization of the Haar measure $d\chi$ on \hat{G}, the mapping $f \to \mathcal{F} f$ extends uniquely to an isometry

$$\mathcal{F} : L^2(G) \to L^2(\hat{G}).$$
1. Introduction

2. Duality of abelian groups

3. Bounded sets in topological groups

4. Main results
Pontryagin-van Kampen duality establishes a duality between the subcategories of compact and discrete abelian groups.
Pontryagin-van Kampen duality establishes a duality between the subcategories of compact and discrete abelian groups. If G denotes a compact abelian group and Γ denotes its dual group, we have the following equivalences between topological properties of G and algebraic properties of Γ:
Pontryagin-van Kampen duality establishes a duality between the subcategories of compact and discrete abelian groups. If G denotes a compact abelian group and Γ denotes its dual group, we have the following equivalences between topological properties of G and algebraic properties of Γ:

(i) $\text{weight}(G) = |\Gamma|$ (metrizability $\iff |\Gamma| \leq \omega$);
(ii) G is connected $\iff \Gamma$ is torsion free;
(iii) $\text{Dim}(G) = 0$ $\iff \Gamma$ is torsion; and
(iv) G is monothetic $\iff \Gamma$ is isomorphic to a subgroup of \mathbb{T}_d.

Salvador Hernández

Bounded sets in topological groups
The notions defined for LCA groups previously (characters, dual group,...) make sense for general topological abelian groups.
The notions defined for LCA groups previously (characters, dual group,...) make sense for general topological abelian groups. We say that a topological abelian group \((G, \tau)\) satisfies *Pontryagin duality* (*P-reflexive* for short) if the evaluation map \(\mathcal{E}_G\) is a topological isomorphism onto.
The notions defined for LCA groups previously (characters, dual group,...) make sense for general topological abelian groups. We say that a topological abelian group \((G, \tau)\) satisfies Pontryagin duality \((P\text{-reflexive for short})\) if the evaluation map \(\mathcal{E}_G\) is a topological isomorphism onto. If the evaluation map is just an embedding, we say that \(G\) is subreflexive. In this case, we identify \(G\) with its image \(\mathcal{E}[G] \leq \hat{G}\).
The notions defined for LCA groups previously (characters, dual group,...) make sense for general topological abelian groups. We say that a topological abelian group \((G, \tau)\) satisfies Pontryagin duality (\(P\)-reflexive for short) if the evaluation map \(\mathcal{E}_G\) is a topological isomorphism onto. If the evaluation map is just an embedding, we say that \(G\) is subreflexive. In this case, we identify \(G\) with its image \(\mathcal{E}[G] \leq \widehat{G}\).

Let \(\mathcal{K}(G)\) denote the family of all compact subsets of \(G\). For a set \(A \subseteq G\) and a positive real \(\epsilon\), define (additive notation)

\[
[A, \epsilon] = \{\chi \in \widehat{G} : (\forall a \in A) \ |\chi(a)| \leq \epsilon\}.
\]

The sets \([K, \epsilon] \subseteq \widehat{G} (K \in \mathcal{K}(G))\) form a neighborhood base at the trivial character in \(\widehat{G}\).
Observe that for each compact subset K of G, the set $K_n = K \cup 2K \cup \cdots \cup nK$ is also compact, and $[K_n, 1/4] \subset [K, 1/4n]$.
Observe that for each compact subset K of G, the set $K_n = K \cup 2K \cup \cdots \cup nK$ is also compact, and $[K_n, 1/4] \subset [K, 1/4n]$. Thus, the sets $[K, 1/4]$, $K \in \mathcal{K}(G)$, also form a neighborhood base of \hat{G} at the trivial character.
Observe that for each compact subset K of G, the set

$$K_n = K \cup 2K \cup \cdots \cup nK$$

is also compact, and

$$[K_n, 1/4] \subset [K, 1/4n].$$

Thus, the sets $[K, 1/4], K \in \mathcal{K}(G)$, also form a neighborhood base of \hat{G} at the trivial character.

Definition

For $A \subseteq G$, $A^\triangleright = [A, 1/4]$

for $X \subseteq \hat{G}$, $X^\triangleleft = \{g \in G : (\forall \chi \in X) \ |\chi(g)| \leq \frac{1}{4}\}$.
Observe that for each compact subset K of G, the set $K_n = K \cup 2K \cup \cdots \cup nK$ is also compact, and $[K_n, 1/4] \subset [K, 1/4n]$. Thus, the sets $[K, 1/4], K \in \mathcal{K}(G)$, also form a neighborhood base of \hat{G} at the trivial character.

Definition

For $A \subseteq G$, $A^\triangleright = [A, 1/4]$ for $X \subseteq \hat{G}$, $X^\triangleleft = \{g \in G : (\forall \chi \in X) \left|\chi(g)\right| \leq \frac{1}{4}\}$.

Definition [Vilenkin]

A set $A \subseteq G$ is quasi-convex if $A^{\triangleright \triangleleft} = A$. G is locally quasi-convex if it has a neighborhood base at its identity consisting of quasi-convex sets.
Observe that for each compact subset K of G, the set $K_n = K \cup 2K \cup \cdots \cup nK$ is also compact, and $[K_n, 1/4] \subset [K, 1/4n]$. Thus, the sets $[K, 1/4], \ K \in \mathcal{K}(G)$, also form a neighborhood base of \hat{G} at the trivial character.

Definition

For $A \subseteq G$, $A^\triangleright = [A, 1/4]$

for $X \subseteq \hat{G}$, $X^\triangleleft = \{ g \in G : (\forall \chi \in X) \ |\chi(g)| \leq 1/4 \}$.

Definition [Vilenkin]

A set $A \subseteq G$ is quasi-convex if $A^\triangleright\triangleleft = A$. G is locally quasi-convex if it has a neighborhood base at its identity consisting of quasi-convex sets.

Lemma [Banaszczyk]

For each neighborhood U of 0 in G, $U^\triangleright \in \mathcal{K}(\hat{G})$.
In a different direction, we need the following definitions.

Definition

Let \((\mathbb{P}, \leq)\) be a partial ordered set. A subset \(D\) is **cofinal** in \(\mathbb{P}\) if \(D \subseteq \mathbb{P}\), and for each \(p \in \mathbb{P}\) there is \(d \in D\) such that \(p \leq d\). The **cofinality** of \(\mathbb{P}\), denoted \(\text{cof}(\mathbb{P})\), is the minimal cardinality of a cofinal set in \(\mathbb{P}\).
In a different direction, we need the following definitions.

Definition

Let (\mathbb{P}, \leq) be a partial ordered set. A subset D is **cofinal** in \mathbb{P} if $D \subset \mathbb{P}$, and for each $p \in \mathbb{P}$ there is $d \in D$ such that $p \leq d$. The **cofinality** of \mathbb{P}, denoted $\text{cof}(\mathbb{P})$, is the minimal cardinality of a cofinal set in \mathbb{P}.

Given two partial ordered sets (X, \leq) and (Y, \preceq) we say that (X, \leq) has **cofinality greater or equal than** (Y, \preceq) when there is a map $\Phi : X \to Y$ which preserves the order and such that $\Phi(X)$ is cofinal in Y. **Cofinality equivalence** is defined accordingly.
For each $A \subseteq G$, A^\triangleright is always a quasi-convex subset of \hat{G}. Thus, \hat{G} is locally quasi-convex for all topological groups G. Moreover, local quasi-convexity is hereditary for arbitrary subgroups.
For each $A \subseteq G$, A^\triangleright is always a quasi-convex subset of \hat{G}. Thus, \hat{G} is locally quasi-convex for all topological groups G. Moreover, local quasi-convexity is hereditary for arbitrary subgroups.

Lemma

Let G be a complete locally quasi-convex group. Let $\mathcal{N}_{\hat{G}}$ be the family of all neighborhoods of 0 in \hat{G}. Then:

- $(\mathcal{N}_{\hat{G}}, \supseteq)$ is cofinally equivalent to $(\mathcal{K}(G), \subseteq)$.
- $\chi(\hat{G}) = \text{cof}(\mathcal{K}(G))$.

Salvador Hernández
Bounded sets in topological groups
[Proof]

Clearly, the polar map $\triangleright : \mathcal{K}(G) \to \mathcal{N}_{\hat{G}}$ is monotone and cofinal. Consider the other direction. Let $K \in \mathcal{K}(G)$, and take $U = K^\triangleright \in \mathcal{N}_{\hat{G}}$. By a Banaszczyk Lemma $U^\triangleright \in \mathcal{K}(\hat{G})$. Now,

$$K \subset K^{\triangleright \triangleleft} = U^\triangleleft = \mathcal{E}^{-1}[U^\triangleright \cap \mathcal{E}[G]].$$

Clearly $U^\triangleright \cap \mathcal{E}[G]$ is precompact and, since \mathcal{E} is open and G is complete, it follows that $\mathcal{E}^{-1}[U^\triangleright \cap \mathcal{E}[G]]$ is compact. Thus, the monotone map $\triangleleft : \mathcal{N}_{\hat{G}} \to \mathcal{K}(G)$ is also cofinal.
Clearly, the polar map \(\rhd : \mathcal{K}(G) \rightarrow \mathcal{N}_G \) is monotone and cofinal. Consider the other direction. Let \(K \in \mathcal{K}(G) \), and take \(U = K^{\rhd} \in \mathcal{N}_G \). By a Banaszczyk Lemma \(U^{\rhd} \in \mathcal{K}(\hat{G}) \). Now,

\[
K \subset K^{\rhd \triangleleft} = U^{\triangleleft} = \mathcal{E}^{-1}[U^{\rhd} \cap \mathcal{E}[G]].
\]

Clearly \(U^{\rhd} \cap \mathcal{E}[G] \) is precompact and, since \(\mathcal{E} \) is open and \(G \) is complete, it follows that \(\mathcal{E}^{-1}[U^{\rhd} \cap \mathcal{E}[G]] \) is compact. Thus, the monotone map \(\triangleleft : \mathcal{N}_G \rightarrow \mathcal{K}(G) \) is also cofinal.

Proposition

Let \(G \) be subreflexive, and \(\mathcal{N}_G \) be the family of all neighborhoods of 0 in \(G \). Then:

1. \((\mathcal{N}_G, \supset) \) is cofinally equivalent to \((\mathcal{K}(\hat{G}), \subset) \).
2. \(\chi(G) = \text{cof}(\mathcal{K}(\hat{G})) \).
1. Introduction

2. Duality of abelian groups

3. Bounded sets in topological groups

4. Main results
Thus duality has taken us to the question of estimating $\text{cof}(\mathcal{K}(G))$ for topological abelian groups G.
Assume that G is a metrizable topological group, $\mathcal{V} = \{V_m\}_{m<\omega}$ is a neighborhood base of the identity e, I is a dense subset of G having minimal cardinality, and \mathcal{B} denotes the collection of all precompact (or bounded) subsets of G.
Assume that G is a metrizable topological group, $\mathcal{V} = \{V_m\}_{m<\omega}$ is a neighborhood base of the identity e, I is a dense subset of G having minimal cardinality, and \mathcal{B} denotes the collection of all precompact (or bounded) subsets of G.

If $[I]^*$ designates the collection of (non empty) finite subsets of I and $\omega[I]^*$ the set of all functions $f : \omega \to [I]^*$,
Assume that G is a metrizable topological group, $\mathcal{V} = \{V_m\}_{m<\omega}$ is a neighborhood base of the identity e, I is a dense subset of G having minimal cardinality, and \mathcal{B} denotes the collection of all precompact (or bounded) subsets of G.

If $[I]^*$ designates the collection of (non empty) finite subsets of I and $\omega[I]^*$ the set of all functions $f : \omega \rightarrow [I]^*$, then we have defined a map

$$\Psi_{\mathcal{V}} : \omega[I]^* \rightarrow \mathcal{B}$$

as follows

$$\Psi_{\mathcal{V}}(\alpha) = \bigcap_{m \in \omega} \left(\bigcup_{i \in \alpha(m)} (iV_m) \right).$$
Assume that G is a metrizable topological group, $\mathcal{V} = \{V_m\}_{m<\omega}$ is a neighborhood base of the identity e, I is a dense subset of G having minimal cardinality, and \mathcal{B} denotes the collection of all precompact (or bounded) subsets of G.

If $[I]^*$ designates the collection of (non empty) finite subsets of I and $\omega[I]^*$ the set of all functions $f : \omega \to [I]^*$, then we have defined a map

$$\Psi_{\mathcal{V}} : \omega[I]^* \to \mathcal{B}$$

as follows

$$\Psi_{\mathcal{V}}(\alpha) = \bigcap_{m \in \omega} \left(\bigcup_{i \in \alpha(m)} i V_m \right).$$

If we consider the inclusion order in \mathcal{B} and the pointwise inclusion order "\subseteq" in $\omega[I]^*$; that is, for $\alpha, \beta \in \omega[I]^*$, $\alpha \subseteq \beta$ means: $\alpha(n) \subseteq \beta(n)$ for all $n < \omega$.
Lemma

The map \(\Psi \) is order preserving and \(\Psi(\omega [I]^*) \) is a cofinal subset of \(\mathcal{B} \).
Lemma
The map Ψ_V is order preserving and $\Psi_V(\omega[I]^*)$ is a cofinal subset of \mathcal{B}.

Proof
It is clear that Ψ_V preserves the order. Now, let $B \in \mathcal{B}$. Then, for all $m \in \omega$, there is $F_m \in [I]^*$ such that $B \subseteq \bigcup_{i \in F_m} iV_m$. Take $\alpha : \omega \longrightarrow [I]^*$ defined by $\alpha(m) = F_m$. Then $\Psi_V(\alpha) \supseteq B$.
Lemma

The map $\Psi_{\mathcal{I}}$ is order preserving and $\Psi_{\mathcal{I}}(\omega[I]^*)$ is a cofinal subset of \mathcal{B}.

Proof

It is clear that $\Psi_{\mathcal{I}}$ preserves the order. Now, let $B \in \mathcal{B}$. Then, for all $m \in \omega$, there is $F_m \in [I]^*$ such that $B \subseteq \bigcup_{i \in F_m} iV_m$. Take $\alpha : \omega \rightarrow [I]^*$ defined by $\alpha(m) = F_m$. Then $\Psi_{\mathcal{I}}(\alpha) \supseteq B$.

Notice that for a bounded neighbourhood U of the identity in G, the set

$$\mathcal{B}_U = \left\{ \bigcup_{i \in F} iU : F \in [I]^* \right\}$$

is cofinal in \mathcal{B}. As a consequence, if G is locally bounded and $\kappa = |I|$, then \mathcal{B} is cofinally equivalent to $[\kappa]^*$ and $\text{cof}(\mathcal{B}) = \kappa$.

Salvador Hernández
Bounded sets in topological groups
The question for non locally bounded groups is more interesting. Firstly, we deal with $|I| = \omega$.
The question for non locally bounded groups is more interesting. Firstly, we deal with $|I| = \omega$. In this case, the map

$$\Theta(\alpha)(n) = \max\{j : j \in \alpha(n)\}$$

establishes the cofinal equivalence between the sets $\omega[\omega]^*$ and $\omega\omega$, the later equipped with the canonical pointwise order. Hence, we shall take the set $\omega\omega$ (not $\omega[\omega]^*$) for the sake of simplicity.
The question for non locally bounded groups is more interesting. Firstly, we deal with $|I| = \omega$. In this case, the map

$$\Theta(\alpha)(n) = \max\{j : j \in \alpha(n)\}$$

establishes the cofinal equivalence between the sets $\omega[\omega]^*$ and $\omega\omega$, the later equipped with the canonical pointwise order. Hence, we shall take the set $\omega\omega$ (not $\omega[\omega]^*$) for the sake of simplicity.

When $|I| = \omega$, in addition to the already defined map $\Psi_{\mathfrak{I}}$, it is also useful to consider the map

$$\Phi_{\mathfrak{I}} : \mathcal{B} \to \omega\omega$$

defined by the rule

$$\Phi_{\mathfrak{I}}(K)(m) := \min \left\{ n : K \subseteq \bigcup_{i \leq n} iV_m \right\}.$$
The question for non locally bounded groups is more interesting. Firstly, we deal with $|I| = \omega$. In this case, the map

$$\Theta(\alpha)(n) = \max\{j : j \in \alpha(n)\}$$

establishes the cofinal equivalence between the sets $\omega[\omega]^*$ and $\omega\omega$, the later equipped with the canonical pointwise order.

Hence, we shall take the set $\omega\omega$ (not $\omega[\omega]^*$) for the sake of simplicity.

When $|I| = \omega$, in addition to the already defined map Ψ_V, it is also useful to consider the map

$$\Phi_V : \mathcal{B} \to \omega\omega$$

defined by the rule

$$\Phi_V(K)(m) := \min \left\{ n : K \subseteq \bigcup_{i \leq n} iV_m \right\}.$$

Φ_V is order preserving and relates the confinality of \mathcal{B} and $\omega\omega$.
Lemma

If G is metrizable and not locally bounded, then there is a neighborhood base $\mathcal{V} = \{U_m\}_{m < \omega}$ such that $\Phi_{\mathcal{V}}(\mathcal{B})$ is cofinal in $\omega\omega$.

Proof

It suffices to show that there is a neighborhood base $\{U_n: n \in \omega\}$, at e, such that for each $f \in \omega\omega$, there is a compact $K \subseteq G$, with $f \leq \Phi_{\mathcal{V}}[K]$.

Let $U_n, n \in \mathbb{N}$, be a descending neighborhood base at e consisting of unbounded subsets. As each U_n is not bounded, we may assume (by shrinking U_{n+1} if needed) that there is no m such that $U_n \subseteq \{1, \ldots, m\} \cdot U_{n+1}$.

Given $f \in \omega\omega$, choose for each n an element $x_n \in U_n \setminus \{1, \ldots, f(n)\} \cdot U_{n+1}$. As the original sequence U_n was descending to e, \{x_n\} converges to e, and thus $K = \{x_n: n \in \mathbb{N}\} \cup \{e\}$ is the required compact subset of G.

Salvador Hernández

Bounded sets in topological groups
Lemma

If G is metrizable and not locally bounded, then there is a neighborhood base $\mathcal{V} = \{ U_m \}_{m < \omega}$ such that $\Phi_{\mathcal{V}}(\mathcal{B})$ is cofinal in $\omega \omega$.

Proof

It suffices to show that there is a neighborhood base $\{ U_n : n \in \omega \}$, at e, such that for each $f \in \omega \omega$, there is a compact $K \subseteq G$, with $f \leq \Phi_{\mathcal{V}}[K]$.
Lemma

If G is metrizable and not locally bounded, then there is a neighborhood base $\mathcal{V} = \{U_m\}_{m<\omega}$ such that $\Phi_{\omega}(\mathcal{B})$ is cofinal in $\omega\omega$.

Proof

It suffices to show that there is a neighborhood base $\{U_n : n \in \omega\}$, at e, such that for each $f \in \omega\omega$, there is a compact $K \subseteq G$, with $f \leq \Phi_{\omega}[K]$.

Let $U_n, n \in \mathbb{N}$, be a descending neighborhood base at e consisting of unbounded subsets. As each U_n is not bounded, we may assume (by shrinking U_{n+1} if needed) that there is no m such that $U_n \subseteq \{1, \ldots, m\} \cdot U_{n+1}$.
Lemma

If G is metrizable and not locally bounded, then there is a neighborhood base $\mathcal{V} = \{U_m\}_{m<\omega}$ such that $\Phi_{\mathcal{V}}(\mathcal{B})$ is cofinal in $\omega\omega$.

Proof

It suffices to show that there is a neighborhood base $\{U_n : n \in \omega\}$, at e, such that for each $f \in \omega\omega$, there is a compact $K \subseteq G$, with $f \leq \Phi_{\mathcal{V}}[K]$.

Let $U_n, n \in \mathbb{N}$, be a descending neighborhood base at e consisting of unbounded subsets. As each U_n is not bounded, we may assume (by shrinking U_{n+1} if needed) that there is no m such that $U_n \subseteq \{1, \ldots, m\} \cdot U_{n+1}$. Given $f \in \omega\omega$, choose for each n an element $x_n \in U_n \setminus \{1, \ldots, f(n)\} \cdot U_{n+1}$.
Lemma

If G is metrizable and not locally bounded, then there is a neighborhood base $\mathcal{V} = \{U_m\}_{m<\omega}$ such that $\Phi_{\mathcal{V}}(\mathcal{B})$ is cofinal in $\omega \omega$.

Proof

It suffices to show that there is a neighborhood base $\{U_n : n \in \omega\}$, at e, such that for each $f \in \omega \omega$, there is a compact $K \subseteq G$, with $f \leq \Phi_{\mathcal{V}}[K]$.

Let U_n, $n \in \mathbb{N}$, be a descending neighborhood base at e consisting of unbounded subsets. As each U_n is not bounded, we may assume (by shrinking U_{n+1} if needed) that there is no m such that $U_n \subseteq \{1, \ldots, m\} \cdot U_{n+1}$. Given $f \in \omega \omega$, choose for each n an element $x_n \in U_n \setminus \{1, \ldots, f(n)\} \cdot U_{n+1}$. As the original sequence U_n was descending to e, $\{x_n\}$ converges to e, and thus $K = \{x_n : n \in \mathbb{N}\} \cup \{e\}$ is the required compact subset of G.

Salvador Hernández

Bounded sets in topological groups
Theorem

Let G be a separable metrizable group. Then B is cofinally equivalent to one of following ordered sets, $\{0\}$, ω, or ω_ω, depending on whether G is either trivial or bounded, locally bounded, or non locally bounded respectively.
Theorem

Let G be a separable metrizable group. Then \mathcal{B} is cofinally equivalent to one of following ordered sets, $\{0\}$, ω, or $\omega \omega$, depending on whether G is either trivial or bounded, locally bounded, or non locally bounded respectively. Hence, if the group G is not locally bounded, it follows that $\text{cof}(\mathcal{B}) = \omega$.
The extension of these results to arbitrary metrizable groups G deals not only with the density $d(G)$ of the group but with another invariant cardinal of the group, named *local density* of G, which is defined by

$$
\text{ld}(G) = \min \{d(U) : U \text{ is a nbd of } e \text{ in } G\}.
$$
The extension of these results to arbitrary metrizable groups G deals not only with the density $d(G)$ of the group but with another invariant cardinal of the group, named local density of G, which is defined by

$$ld(G) = \min\{d(U) : U \text{ is a nbd of } e \text{ in } G\}.$$

We say that G has stable density if

$$ld(G) = d(G).$$
The extension of these results to arbitrary metrizable groups G deals not only with the density $d(G)$ of the group but with another invariant cardinal of the group, named *local density* of G, which is defined by

$$\text{ld}(G) = \min\{d(U) : U \text{ is a nbd of } e \text{ in } G\}.$$

We say that G has *stable density* if

$$\text{ld}(G) = d(G).$$

Theorem

Let G be a metrizable group that is not locally bounded. Then

$$\text{cof}(\mathcal{B}) = \vartheta \cdot d(G) \cdot \text{cof}(\omega[\text{ld}(G)]).$$
The extension of these results to arbitrary metrizable groups G deals not only with the density $d(G)$ of the group but with another invariant cardinal of the group, named *local density* of G, which is defined by

$$ld(G) = \min\{d(U) : U \text{ is a nbd of } e \text{ in } G\}.$$

We say that G has *stable density* if

$$ld(G) = d(G).$$

Theorem

Let G be a metrizable group that is not locally bounded. Then

$$\text{cof}(\mathcal{B}) = \omega \cdot d(G) \cdot \text{cof}(\omega[ld(G)]).$$

Using duality we obtain
Theorem

Let G be a subreflexive group, such that the group $\Gamma = \hat{G}$ is metrizable. Then $\chi(G) = \text{cof}(B(\Gamma))$. Thus,

- If Γ is precompact, then $\chi(G) = 1$, that is, G is discrete.
- If Γ is nonprecompact locally precompact, then $\chi(G) = d(\Gamma)$.
- If Γ is not locally precompact, then $\chi(G) = d \cdot d(\Gamma) \cdot \text{cof}(\omega \text{ld}(\Gamma))$.
Theorem

Let G be a subreflexive group, such that the group $\Gamma = \hat{G}$ is metrizable. Then $\chi(G) = \text{cof}(\mathcal{B}(\Gamma))$. Thus,

- If Γ is precompact, then $\chi(G) = 1$, that is, G is discrete.
- If Γ is nonprecompact locally precompact, then $\chi(G) = d(\Gamma)$.
- If Γ is not locally precompact, then $\chi(G) = \varnothing \cdot d(\Gamma) \cdot \text{cof}([\omega \text{l}(\Gamma)])$.

In particular, we deduce for free abelian topological groups

Corollary

Assume that X is a k_ω space. Then

$$\chi(A(X)) = \varnothing \cdot \text{cof}(\omega[\kappa]),$$

where $\kappa = \sup\{w(K) : K \in \mathcal{K}(X)\}$.
Theorem

Let G be a locally quasi-convex k_ω group with $\{K_n : n \in \omega\}$ cofinal in $\mathcal{K}(G)$. Let

$$
\kappa = \sup_{n \in \mathbb{N}} w(K_n); \text{ and } \\
\lambda = \min\{\sup\{w(K) : K \in \mathcal{K}(G/H)\} : H \leq G \text{ compact}\}.
$$

- If G is nondiscrete and locally compact, then $\chi(G) = \kappa$.
- If G is not locally compact, then $\chi(G)$ is the maximum of \varnothing, κ, and $\operatorname{cof}(\omega[\lambda])$.